

Green Metrics: Real-Life Tools & Case Study from Fragrance Industry

Goal of the course

Provide a comprehensive perspective of the green metrics developed, used in the chemical industries. The pros/cons and the limitations of all these metrics will be shown as well as the different need between industries. The case of Perfumery industry will be specially emphasized.

Course Syllabus

- Green Chemistry & Sustainability
- Presentation of the different metrics
- Pros/Cons & Limitations
- What is the purpose of these metrics?
- Presentation of different methodologies
- Difference between the pharma industry and Perfumery industry
- Example in the Perfumery industry: Ecoscent Compass, Green Motion or Estée Lauder Companies

<u>fabrice.robvieux@firmenich.com</u> Senior Scientist, dsm-firmenich

www.dsm-firmenich.com

Green Metrics

Mass-Based Metrics for Measuring Greeness

E factor (E)3

E = Total mass of waste
Mass of final product

Atom Economy (AE)6

AE (%) = $\frac{\text{Mol wt of product } \times 100}{\text{Sum of mol wts of reactants}}$

Mass Intensity (MI)31,32

MI = Total mass in process

Mass of product

Process Mass Intensity (PMI)34,35

 $PMI = \frac{Total \ mass \ in \ process \ (incl \ H_2O)}{Mass \ of \ product}$

Waste Water Intensity (WWI)

WWI = Mass of process water
Mass of product

Solvent intensity (SI)

SI = Mass of solvents
Mass of product

Reaction Mass Efficiency (RME)31

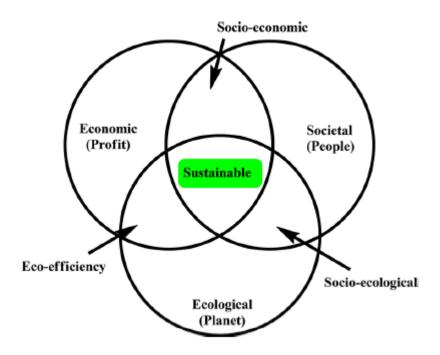
RME (%) = $\frac{\text{Mass of product x } 100}{\text{Total mass of reactants}}$

Mass Productivity (MP)

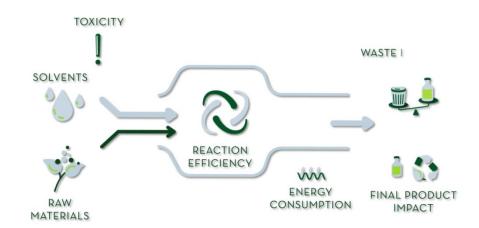
MP (%) = $\frac{\text{Mass of product x } 100}{\text{Total mass (incl solvents)}}$

Effective Mass Yield (EMY)33

EMY (%) = Mass of product
Mass of hazardous reactants


Carbon Economy (CE)31

CE (%) = $\frac{\text{Carbon in product } x \ 100}{\text{Total carbon in reactants}}$


ACS Sustainable Chem. Eng. 2018, 6, 32

Green Metrics

Sustainability metrics

What are the Different Initiatives in F&F?

GREEN MOTION™ by Mane

7 concepts, penalty scoring

FiveCarbon Path™ by Givaudan

5 concepts (RC, BDG, ...)

But also L'Oreal, Estée Lauder.

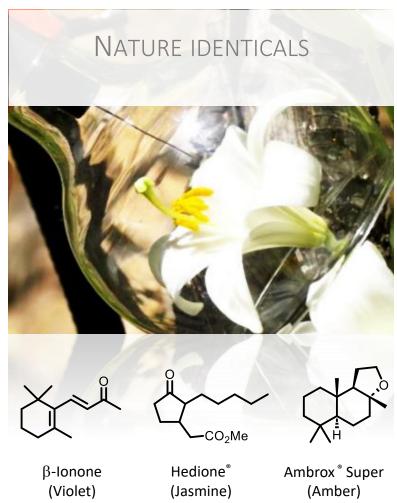
We already do many things to ensure this:

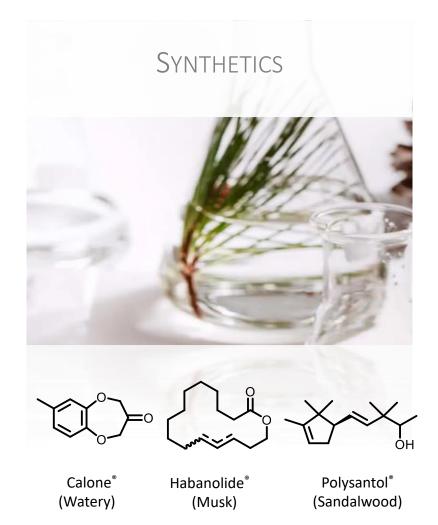
we utilize our unique and patented processes to transform byproducts

we design chemical processes that reduce waste and reduce demand on diminishing resources

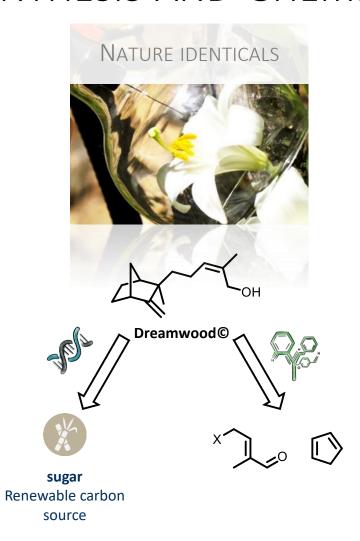
we create renewable alternatives to fossil crude oil based feedstocks

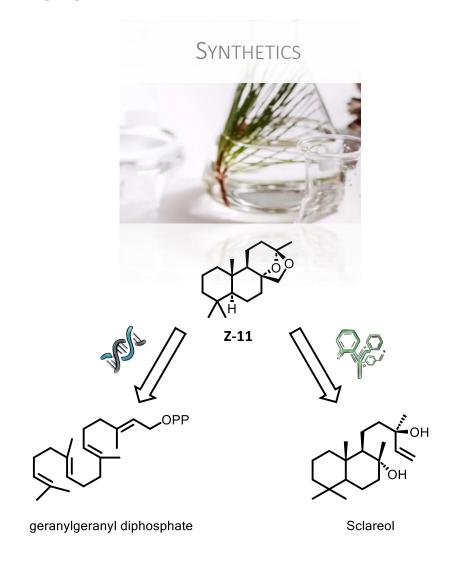
we develop earthfriendly ingredients that touch our lives every day


Symrise



Renewable INGs by IFF for > 50% RC


FRAGRANCE — AN UNIQUE EQUATION



BIOSYNTHESIS AND CHEMICAL SYNTHESIS

For Clearwood Synthesis: (a) Fehr, C., Vuagnoux, M. Firmenich SA WO 2009141781; (b) Chapuis, C., Firmenich SA WO 2012110375; (c) Birkbeck, A. A. Firmenich SA WO2013001026.

For Sclareol Synthesis: M. Schalk, L. Pastore, M. A. Mirata, S. Khim, M. Schouwey, F. Deguerry, V. Pineda, L. Rocci, L. Daviet Toward a Biosynthetic Route to Sclareol and Amber Odorants *J. Am. Chem. Soc.* **2012**, *134*, 18900–18903.

Mass Based Metrics

Chemical Process

$$AE = \frac{MW(Product) \times 100}{\sum MW(Raw\ Materials) + \sum MW(Reagents)}$$

Optimum Value= 100.

$$EFactor = \frac{\sum m(Input\ Materials\ w.\ o.\ Water) - m\ (Product)}{m(Product)}$$

Optimum Value= 0.

$$cEFactor = \frac{\sum m(Input\ Materials\ incl.\ Water) - m\ (Product)}{m(Product)}$$

Optimum Value= 0.

$$RME = \frac{m(Product) \times 100}{\sum m(Raw\ Materials)}$$

Optimum Value= 100.

$$PMI = \frac{\sum m(Input\ Materials\ incl.\ Water)}{m(Product)}$$

Optimum Value= 1.

Roschangar, F; Colberg, J. *Green Chemistry Metrics in Green Techniques for Organic Synthesis and Medicinal Chemistry,* Second Edition. Edited by Wei Zhang and Berkeley W. Cue. (2018). Ed. John Wiley & Sons Ltd

Mass Based Metrics

Renewables

Renewables Intensity

$$RI = \frac{\sum m(Renewably\ Derivable\ Input\ Materials)}{m(Product)}$$

Optimum Value= 1

Renewables Percentage

$$RP = \frac{RI \times 100}{PMI}$$

Optimum Value= 100.

Jiménez-González, C.; Constable, D. J. C.; Ponder, C. S. Evaluating the "Greenness" of chemical processes and products in the pharmaceutical industry—a green metrics primer *Chem. Soc. Rev.*, **2012**, *41*, 1485–1498.

Safety and Harzard Metrics

Thermal Hazard
Reagent Hazard
Pressure
Hazardous by-product
Waste: metal, toxicity, upcycling

Solvant Usage: number, recovery Mass Intensity of Solvent

Biodegradation, Bioaccumulation, Energy use

Curzons, A. D.; Constable, D. J. C.; Mortimera, D. N.; Cunningham, V. L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective *Green Chem.*, **2001**, *3*, 1–6.

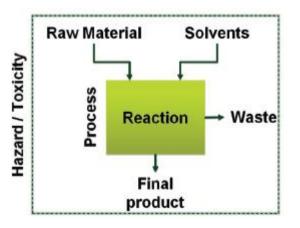
Specificity of Perfumery Ingredients

Natural oil extraction Biotechnology Processes Metrics should be easy to understand by our clients and final consumers

Our competitors are also our clients: Needs for metrics that could be asked or guessed with the highest accuracy possible

Starting Point: 12 Green Chemistry Principles...

Selection? Which is the most important? Comprehensive?


Some of the principles may be contradictory with each other Difficult to know what type of action to implement in order to find the optimal overall result.

A yield increase or a reduction of waste may entail higher energy consumption, and this kind of conflicting choice is commonly faced by industrial chemists.

Finding the right balance between being too qualitative and requiring a large amount of information (time and resources consuming)

Concept	Major criterion		Unit
Raw material	Raw material origin Process naturalness		Category Yes/No
Solvents	Solvent category		Category
Hazard and toxicity of the reagents	GHS pictogram		Pictogram
Reaction	Mass yield Number of steps Number of solvents Carbon economy Number of protection/deprotection step Overall processing time	Number of carbons of product Number of carbons of reactants	% Number Number % Number Hour
Process	Most consuming heating process Most consuming cooling process Vacuum Pressure		Category Category Category Category
Hazard and toxicity of the final product	GHS pictogram		Pictogram
Waste	E-Factor	Mass waste (kg) Mass desired product (kg)	${\rm kg~kg^{-1}}$

The 12 principles of Green Chemistry: grouped into 7 fundamental concepts

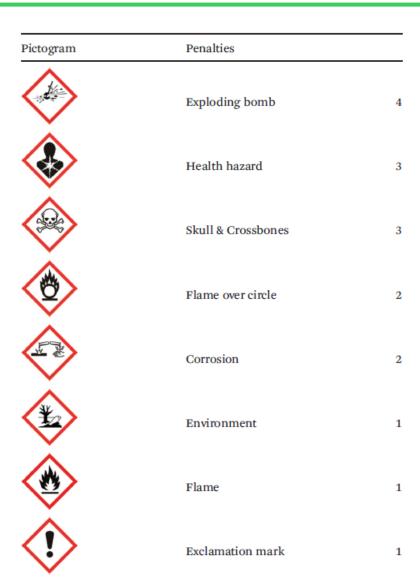
Raw Materials:

Category	Penalties
Synthetic raw materials	10
Raw materials from hemi-synthesis	5
Natural raw materials	0

Solvent categories

Category	Examples	Penalties
CMR and toxic solvent	Methanol, methylene chloride, benzene <i>etc</i> .	10
Petrochemical solvent	Toluene, hexane, cyclohexane <i>etc</i> .	5
Supercritical fluid	Carbon dioxide etc.	2
Ethanol		2
Water		1
No solvent used		0

Solvents Guide


Solvents Guides:

Family	Solvent	AZ	GCI-PR	GSK	Pfizer	Sanofi ^a	Issues	Overall ^b
Water	Water	- 12		24	Preferred	Recommended	7_3	Recommended
Alcohols	MeOH	19	14	14	Preferred	Recommended	-	TBC
	EtOH	16	13	17	Preferred	Recommended	_	Recommended
	i-PrOH	16	16	17	Preferred	Recommended		Recommended
	n-BuOH	17	13	18	Preferred	Recommended	_	Recommended
	t-BuOH	20	15	15	Preferred	Subst. adv.	-	TBC
	Benzyl alcohol	_	11	20	_	Subst. adv.	-	TBC
	Ethylene glycol	_	13	21	Usable	Subst. adv.		TBC
Ketones	Acetone	21	15	15	Preferred	Recommended	i = -i	TBC
MEK	MEK	21	16	15	Preferred	Recommended	_	TBC
	MIBK	22	17	15	_	Recommended	-	TBC
	Cyclohexanone	_	14	20	_	Subst. adv.	_	TBC
sters	Methyl acetate	-	14	14	_	Subst. adv.	_	TBC
	Ethyl acetate	18	15	16	Preferred	Recommended		Recommended
	i-PrOAc	18	13	18	Preferred	Recommended	_	Recommended
	n-BuOAc	13	14	21	_	Recommended	_	Recommended
Ethers	Diethyl ether	27	21	3	Undesirable	Banned	H224	HH
and the contract of the contra	Diisopropyl ether	_		4	Undesirable	Subst. adv.	Perox.	Hazardous
	MTBE	24	21		Usable	Subst. adv.	- Cion	TBC
	THE	23	16	30	Usable	Subst. adv.	H351	TBC
	Me-THF	24	15	11	Usable	Recommended	-	Problematic
	1.4-Dioxane	28	21	11	Undesimble	Subst. reg.	19	Hazardous
	Anisole	18	13	18	Списыные	Recommended	_	Recommended
	DME	21	23	3	Undesimble	Subst. req.	H360	Hazardous
Hydrocarbons	Pentane	-21	- 1	- B	Undesirable	Banned	H224	Hazardous
rydrocarbons	Hexane	26	44	4	Undesirable	Subst. reg.	- 1224	Hazardous
	(3) (3) (3) (3) (3) (3) (4)	21	17	14	Usable	Subst. adv.		Problematic
	Heptane	25	18	14	Usable	Subst. adv.	=	TBC
	Cyclohexane			16	Usable		=	Problematic
	Me-cyclohexane	-	17	16		Subst. adv.		
	Benzene		21		Undesimble	Banned	H350	HH
	Toluene	22		11	Usable	Subst. adv.	H351	Problematic
	Xylenes	19	15	13	Usable	Subst. adv.		Problematic
Halogenated	DCM	20	18	9	Undesirable	Subst. adv.	H351	TBC
	Chloroform	-	18	*	Undesimble	Banned	_	HH
	CCl ₄	_	19	- 8	Undesirable	Banned	H420	HH
	DCE		19	4	Undestrable	Banned	H350	-HH
100000000000000000000000000000000000000	Chlorobenzene	25	16	18	_	Subst. adv.		Problematic
Aprotic polar	Acetonitrile	- 24	14	14	Usable	Recommended	_	Problematic
	DMF	20	17	75	Undesirable	Subst. req.	H360	Hazardous
	DMAc	20	16	4	Undesirable	Subst. req.	H360	Hazardous
	NMP	18	16	7	Undesirable	Subst. req.	H360	Hazardous
	DMPU	-	_	14	-	Subst. adv.	_	Problematic
	DMSO	8	15	14	Usable	Subst. adv.		Problematic
	Sulfolane	9	13	21	_	Subst. adv.	7	Recommended
	Nitromethane			1	.—	Banned	Explo.	HH
discellaneous	Methoxy-ethanol	21	20	3	_	Subst. req.	H360	Hazardous
Acids	Formic acid	20	15	-	_	Subst. req.	_	TBC
	Acetic acid	17	15	17	Usable	Subst. adv.	-	TBC
	Ac ₂ O	_	16	15	-	Subst. adv.	-	TBC
Amines	Pyridine	26	16	5	Undesirable	Subst. adv.	·	TBC
	TEA	23	18	6	_	Subst. reg.		Hazardous

Prat, D. et al. Green Chem. **2014**, 16, 4546. Winterton, N. Clean Technologies and Environmental Policy **2021**, 23, 2499.

^a Subst. adv.: substitution advisable; Subst. req.: substitution requested. ^b TBC: to be confirmed; HH: highly hazardous.

GHS pictogram hierarchy:

Reaction efficiency

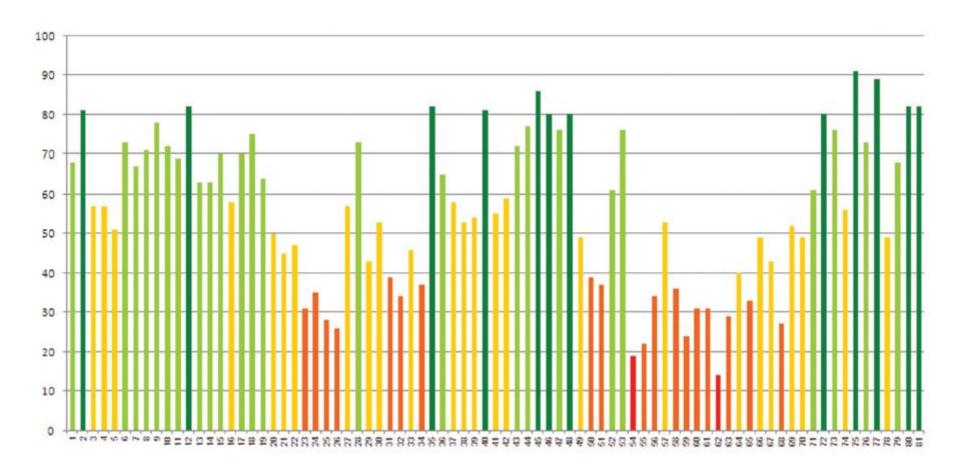
	1. Activation	2. Addition	3. Reduction	Total
GREEN MOTION™ carbon economy	$\frac{9}{4+5} = 1$	$\frac{9}{4+9} = 0.69$	$\frac{8}{9} = 0.89$	0.61
Trost atom economy	$\frac{155}{87 + 86} = 0.90$	$\frac{172}{155 + 86} = 0.71$	$\frac{142}{172} = 0.83$	0.53

Mane: Green Motion™

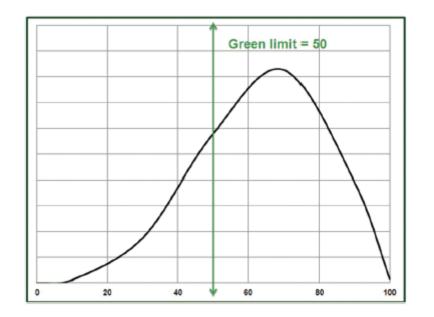
Process efficiency

Focus on the most energy consuming elements: heating, cooling and pressure variation

But not try to accurately calculate the quantity of heat energy required throughout the process

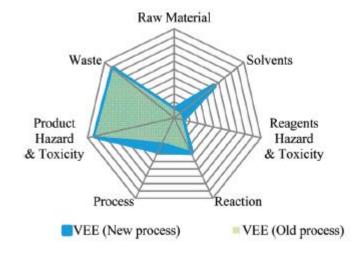

Penalty points attributed for different heating processes

Process efficiency


Penalty points attributed for different heating processes

Gas	6	7	8	9	10	11	12	13
Electrical resistance	5	6	7	8	9	10	11	12
Oil	4	5	6	7	8	9	10	11
Steam up to 15b	4	5	6	7	8	9	10	11
Steam up to 6b	3	4	5	6	7	8	9	10
Steam up to 3b	2	3	4	5	6	7	8	9
Steam	1	2	3	4	5	6	7	8
Ambient temperature	0	1	2	3	4	5	6	7
	12 h	24 h	48 h	96 h	144 h	192 h	240 h	288 h

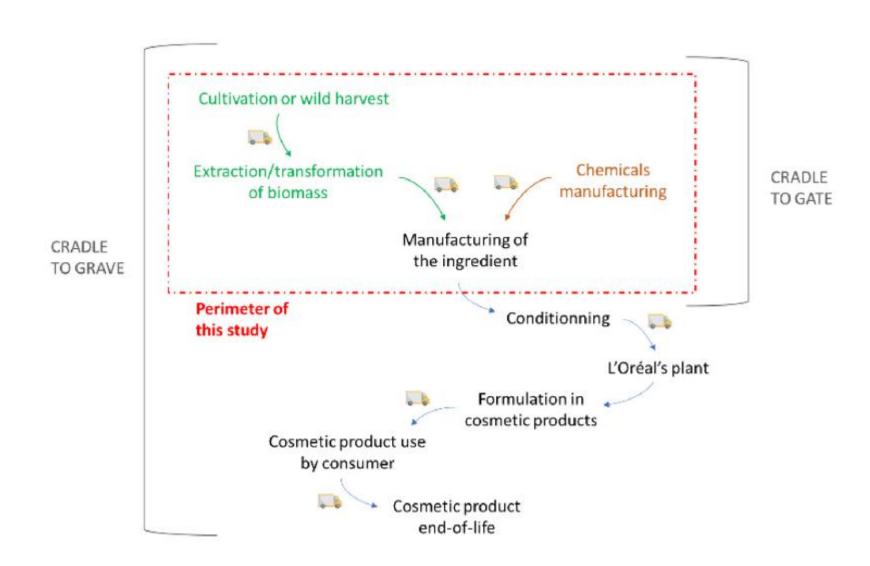
81 products selected to design GREEN MOTION™.:



"Green limit" in GREEN MOTION™:

Vanillyl Ethyl Ether:

	Solvent	Solvent toxicity	Yield	Number of steps	Global process length	E-Factor	GREEN MOTION™ rating
1997	1,2-Dichloroethane	Can cause cancer	50%	4	356 h	2.3	23
2002	Dichloromethane	May cause cancer	51%	4	356 h	2.2	24
2012	Toluene	Not carcinogenic	45%	3	182 h	1.2	37



Ingredients in Perfume:

The objective of the present study is to evaluate the environmental impact of a fragrance and identify eco-design leverages without revealing its **exact composition to preserve confidentiality and industrial knowledge.**

LCA to fragrance can nevertheless appear to be a challenge, due to the numerous ingredients involved and as the composition of a fragrance is one of the best kept secrets of the industry.

Ingredients in Perfume:

Green Chem., 2023, 25, 6365.

Ingredients in Perfume:

A representative panel of fragrance ingredients used in cosmetics was evaluated via LCA with the ecoconception tool SPOT, in complementarity with GREEN MOTION™ and the E-factor

Tool	Type of tool	Concept behind	Approach	Perimeter	Complexity
SPOT	Advanced model	Life-cycle assessment	Quantitative	Upstream life cycle including the production process of the ingredient. Downstream life cycle excluded in this study.	High
GREEN MOTION TM	Simplified model	Green chemistry principles	Quantitative	Life cycle of the ingredient	Medium
E factor	Metric	Waste measurement	Quantitative	Waste of the production process	Low

Ingredients in Perfume:

For the production of 1 kg of the material

GREEN MOTIONTM impact = 100 - GREEN MOTIONTM score

Category	Ingredient	Yield	E-Factor	GREEN MOTION TM impact	SPOT single score (mPt)
Essentials oils (EO) and Jungle Essence™	Lavender EO	1%	100	11	20
extracts	Elemi EO	20%	5	16	1.5
	Orris Butter	0.35%	285	43	46
	Vetiver EO	2%	70	16	4
	Vanilla Pure Jungle Essence™	20%	5	28	14
	Pink Pepper Pure Jungle Essence™	1.5%	33	38	7
Essences by expression	Orange essence	0.01%	4470	24	0.6
Natural extracts with volatile solvent -	Orange flower absolute	0.12%	830	64	208
Absolutes	Jasmine absolute	0.15%	350	64	271
	Narcissus absolute	0.07%	1500	58	209
	Rose absolute	0.16%	600	64	184
Natural extracts with volatile solvent -	Benzoin resinoid	85%	3	25	0.3
Resinoids	Labdanum resinoid	84%	0.3	20	11
	Labdanum absolute	60%	2.5	31	23
	Vanilla absolute	5%	25	49	113
Isolated natural ingredient	cis-3-Hexenol (natural)	0.001%	106 680	31	53
Bio-based ingredients with a fossil-based moiety	Iso E super	42% (from myrcene)	3	52	2
	Vetiveryle acetate	0.84%	127	78	9
	Myrcene (from crude sulfate turpentine)	78%	0.4	34	0.6
	Myrcene (from pine)	4%	0.3	29	0.3
Fossil-based ingredients	Hexyl salicylate	99.9%	10	61	1.1
	Ethyl 2-methyl butyrate	87%	1.3	33	0.5
	Hedione	20%	11	72	9
	cis-3-Hexenol (fossil-based)	42%	0.1	57	0.6
Biotechnology ingredients	Antillone	Confidential	11	31	47
	γ-Octalactone		5	27	7
	Tropicalone		27	34	73

Green Chem., 2023, 25, 6365

For details see SI:

https://www.rsc.org/suppdata/d2/gc/d2gc04860d/d2gc04860d1.pdf.

Ingredients in Perfume: mPt ??

mPt: dimensionless figure
Unit is milli-point (mPt).....700mPt = 0.7 Pt

The absolute value of the points is not very relevant as the main purpose is to compare relative Differences between products or components.

The scale is chosen in such a way that the value of 1 Pt is representative for 1/1000 of the yearly environmental load of one average European inhabitant (in some case US.....)

```
SPOT single
score (mPt)
20
1.5
14
271
209
184
0.3
11
23
113
53
2
0.6
0.3
1.1
0.5
0.6
```

Energy and Water consumption:

Energy and water equivalence coefficient: EC

Type of process	Energy and water equivalence coefficient (EC)
Expanded steam (reference)	1
Steam with a pressure of 3 bars	2
Steam with a pressure of 6 bars	3
Steam with a pressure of 15 bars	4
Heating with oil	4
Pyrolysis using gas	6

The global energy and water requirements of a production unit correspond to the energy and water necessary for an average ingredient produced in this unit.

This average ingredient corresponds to an average process duration and process type.

Energy and Water consumption:

Type of process	Energy and water equivalence coefficient (EC)
Expanded steam (reference)	1
Steam with a pressure of 3 bars	2
Steam with a pressure of 6 bars	3
Steam with a pressure of 15 bars	4
Heating with oil	4
Pyrolysis using gas	6

To calculate this average, it was assumed that each ingredient is produced in the same proportion as the other ingredients of the same production unit (they were selected to be representative)

Average
$$Process_{prod\ unit} = \frac{1}{n} * \sum_{i=1}^{n} (Process\ duration_{ing\ i} * EC_{ing\ i})$$

$$\sum_{i=1}^{n} (Process duration_{ing i} * EC_{ing i})$$
:

 $_{ig\;i}$): th

the arithmetic mean of process duration and process type of all ingredients of a given production unit.

total number of ingredients in the same production unit

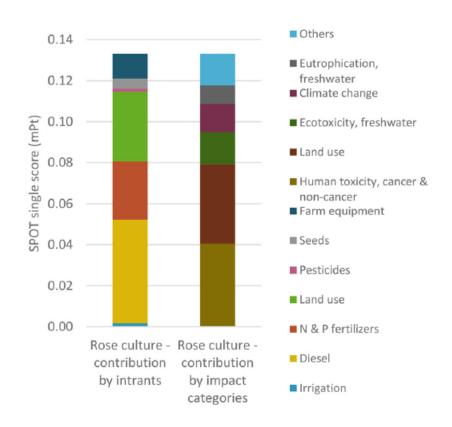
n:

 $Process\ duration_{ing}$: the duration of the process of the ingredient, EC_{ing} : the equivalence coefficient for the ingredient,

Energy and Water consumption:

Type of process	Energy and water equivalence coefficient (EC)
Expanded steam (reference)	1
Steam with a pressure of 3 bars	2
Steam with a pressure of 6 bars	3
Steam with a pressure of 15 bars	4
Heating with oil	4
Pyrolysis using gas	6

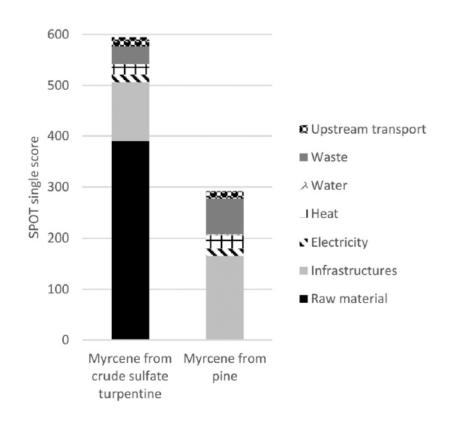
Average
$$Process_{prod\ unit} = \frac{1}{n} * \sum_{i=1}^{n} (Process\ duration_{ing\ i} * EC_{ing\ i})$$


$$Energy\ and\ Water\ Requirements_{ing\ x}\ =\ \frac{Process\ duration_{ing\ x}\ *\ EC_{ing\ x}}{Average\ Process_{prod\ unit}} *\ Energy\ and\ Water\ requirements_{prod\ unit}$$

 Ing_i : all the ingredients produced in the same production unit as ingredient x, $Energy\ and\ Water\ Requirements_{prod\ unit}$: electricity, gaz and water needs of the production unit per kg of produced ingredient or per kg of starting raw material.

Results on different categories:

Rose Culture with extraction


Spot single score (mPt)

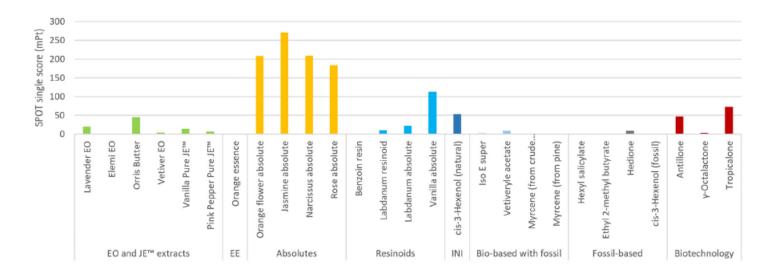
Results on different categories:

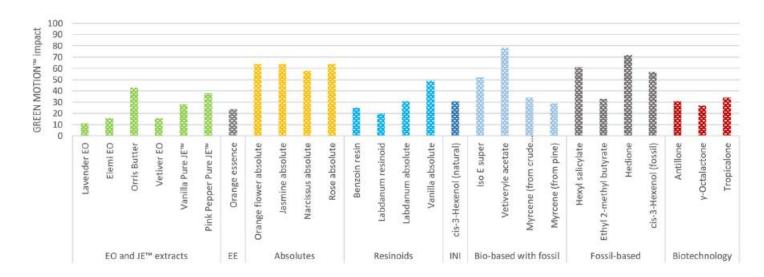
Different raw material source of Myrcene

Spot single score (mPt)

Results on different categories:

Different raw materprocess for cis-3-Hexenol: Extraction from Mint leaves or Chemical Synthesis


Origin	Irrigation	Electricity & infrastructures	Upstream transport	Raw material	Waste	Solvent	Total
Renewable	With	1.846	0.088	59 808	3.794	0	65 536
	Without	1.846	0.088	47 304	3.794	0	53 033
Fossil	_	0.254	0.016	0.165	0.198	3×10^{-3}	0.636


Spot single score (mPt)

Green Motion Impact™:

Category	Ingredient	Raw materials	Solvent	Toxicity	Reaction efficiency	Energy consumption	Raw Final product impact	Waste impact <i>E</i> -factor	GREEN MOTIONTM- impact
Essentials oils (EO) and	Lavender EO	A	В	С	С	A	В	A	11
Jungle Essence™ extracts	Elemi EO	A	В	D	C	C	E	В	16
	Orris Butter	A	В	В	D	D	A	F	43
	Vetiver EO	A	A	A	С	В	В	E	16
	Vanilla Pure Jungle Essence™	A	В	В	D	C	В	В	28
	Pink Pepper Pure Jungle Essence™	A	В	В	E	В	E	D	38
Essences by expression	Orange flower absolute	A	В	A	D	В	D	В	24
Natural extracts with volatile	Orange absolute	A	C	D	E	D	D	F	64
solvent - Absolutes	Jasmine absolute	A	D	D	E	D	C	F	64
	Narcissus absolute	A	С	D	E	C	В	F	58
	Rose absolute	A	C	E	E	C	C	F	64
Natural extracts with volatile	Benzoin resinoid	A	C	D	С	С	В	A	25
solvent - Resinoids	Labdanum resinoid	A	В	D	В	D	A	В	20
	Labdanum absolute	A	C	F	C	C	A	В	31
	Vanilla absolute	A	C	E	E	D	В	C	49
Isolated natural ingredients	cis-3-Hexenol (natural)	A	C	F	С	С	В	C	31
Bio-based ingredients with	Iso E super	D	C	F	D	C	C	В	52
a fossil-based moiety	Vetiveryle acetate	D	C	E	E	Е	C	F	78
	Myrcene (from crude sulfate turpentine)	D	A	D	В	D	D	В	34
	Myrcene (from pine)	D	A	D	D	D	D	В	29
Fossil-based ingredients	Hexyl salicylate	F	D	F	С	D	С	В	61
	Ethyl 2-methyl butyrate	F	В	С	С	C	В	A	33
	Hedione	F	D	F	F	C	A	В	72
	cis-3-Hexenol (fossil-based)	F	С	F	C	Е	В	В	57
Biotechnology ingredients	Antillone	A	D	E	С	C	В	C	31
	gamma-Octalactone	A	D	F	В	Е	A	A	27
	Tropicalone	A	C	Е	C	D	A	D	34

Spot vs Green Motion Impact™:

Mane & L'Oréal: Comparison between Different Tools

Eco-Design Levers

Ingredient category	Main(s) hotspot(s)	Eco-design levers
Essentials oils (EO) and Jungle Essence TM	Raw material	Yield of culture or extraction
extracts		More sustainable farming practices
		More co-products valorization
Essences by expression	Raw material	Yield of culture
		More sustainable farming practices
Natural extracts with volatile solvent -	Raw material and transformation	Yield of culture
Absolutes	process	More sustainable farming practices
	•	More biowaste valorization
		More efficient extraction processes (yield and energy use)
Natural extracts with volatile solvent -	Solvent	Use of more environmentally friendly and less toxic
Resinoids		solvents
Isolated natural ingredients	Raw material	Yield of culture
		More sustainable farming practices
		More co-products valorization
Bio-based ingredients with a fossil-based	Solvent	More sustainable farming practices
moiety		More biowaste valorization
		Yield of manufacturing
		More efficient extraction processes (yield and energy use)
		Chemical synthesis optimization (C factor for example 15)
Fossil-based ingredients	Raw material and transformation	Yield of manufacturing
	process	More efficient extraction processes (yield and energy use)
		Chemical synthesis optimization (C factor for example 15)
Biotechnology ingredients	Confidential	Yield of manufacturing
		More efficient processes (energy use and downstream
		processes)
		Optimization of solvent use

Green Chem., 2023, 25,

ECOINGREDIENT COMPASS®

ECOINGREDIENT COMPASS™

BIODEGRADABILITY

DSM-FIRMENICH MOLECULES

concerns synthetic perfumery ingredients

OBJECTIVE

Communicate proactively and transparently on all parameters

CHARACTERIZATION

Based on Fragrance Green properties parameters from **ECO**SCENT **COMPASS**TM

GCP

UNSG

Renewability

% renewable carbon as parameter

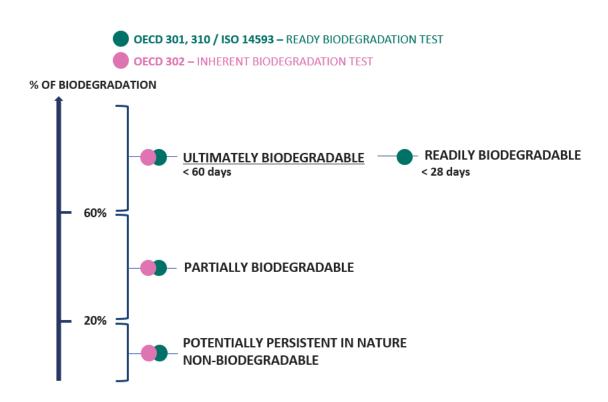
Number of carbon atoms from biogenic source in the finished product

Number of carbon atoms in the finished product

Biodegradation

Ultimately: ≥ 60% biodegradable in 60 days

Biodegradation is the breaking down of chemicals by living organisms such as microbes


cE-factor
Kilograms of waste generated
per kilogram of product *incl.* water

Industry	Tonnes per	E factor (kg waste
segment	annum	per kg product)
Oil refining Bulk chemicals Fine chemicals Pharmaceuticals	$ \begin{array}{r} 10^6 - 10^8 \\ 10^4 - 10^6 \\ 10^2 - 10^4 \\ 10 - 10^3 \end{array} $	<0.1 <1-5 5-50 25 ->100

Biodegradation, Bioaccumulation,

Additional Green Chemistry principles

GCP

UNSG

Atom economy

Number of carbon atoms/finished product

2-(%)

Number of carbon atoms/all C-containing reactants & reagents used

Catalysis

Number of catalytic steps

Total number of steps

9-(

Hazardous reagents

- List all risk phrases from GHS (5344 phrases)
- Clustered by severity

Atom economy & Catalysis

Ranking between A to E

Up to	Е	D	С	В	Α	Ranking
	0.4	0.5	0.65	0.8	1	Atom Economy
	0,45	0,65	0,8	0,9	1	Catalysis

Hazardeous reagents

- Clustered by severity (A to E) and occurrence
- Only the most severe categories have been considered (C to E)
- F-Plot have been used to determine frequency
- This was done using an F-plot in order to be sure that more that 98% of the H-phrase for all our reactants/reagents were covered by this methodology
- In case of reactant/reagent having several H-phrase a limit of 11 H-code was set.

	Frequency Risk Phrases											
Cat.	1	1 2 3 4 5 6 7 8 9 10 11										
С	1	1	2	2	3	3	3	4	4	4	5	
D	1	2	2	3	3	4	4	5	5	5	5	
E	2	3	3	4	5	5	5	5	5	5	5	

Final score for Green Chemistry
Average of the 3 sub-scores (A to E) translated in %

Hazardeous reagents

As Molecules from Competitors have to be included:

Solvents are not taken into account

Temperature of the process is not included

Steps Economy & Redox Economy not included (*Tetrahedron*, 2014, 69(36), 7529; *ACIE* 2009, 48, 2854; *JOC* 2010, 75, 4657)

	Frequency Risk Phrases											
Cat.	1	1 2 3 4 5 6 7 8 9 10 11										
С	1	1	2	2	3	3	3	4	4	4	5	
D	1	2	2	3	3	4	4	5	5	5	5	
E	2	3	3	4	5	5	5	5	5	5	5	

Final score for Green Chemistry
Average of the 3 sub-scores (A to E) translated in %

Synthesis of Hexyl Salicylate

Atom economy

Rank	5	4	3	2	1
Ratio up	0.4	0.5	0.65	0.8	1
to	. .	3.3	0.00	0.0	_

13/13 carbon atoms = 100%

Score 1

Common Fragrance and Flavor Materials: Preparation, Properties and Uses, Horst Surburg, Johannes Panten, **2016**, Wiley-VCH Verlag GmbH & Co. KGaA. DOI:10.1002/9783527693153

Synthesis of Hexyl Salicylate

Catalysis Score

Rank	5	4	3	2	1
Ratio up	0.45	0.65	0.8	0.9	1
to	0.43	0.03	0.0	0.9	_

1/1 step = 100%

Score 1

Synthesis of Hexyl Salicylate

Hazardous Score

All H-code were listed and a score 1 to 5 was given

For Hexyl Salicylate all reactant/reagent and final product were listed and for each the H-code were extracted. Then using our internal classification for each H-phrase, a score (between 1 and 5) was attributed, and this is done for each component.

Synthesis of Hexyl Salicylate

Hazardous Score

Final Ingredient	Reagents/Reactants/Product	1st H	Score	2nd H	Score	3rd H	Score	4th H	Score
		code		code		code		code	
HEXYL SALICYLATE	SALICYLIQUE ACID	H302	2	H318	3				
	HEXANOL	H226	1	H302	2	H312	2	H319	2
	SULFURIC ACIDE 85	H290	2	H314	3				
	HEXYL SALICYLATE	H315	2	H317	2	H400	5	H410	4

Synthesis of Hexyl Salicylate

Hazardous Score

Final Ingredient	Reagents/Reactants/Product	1st H	Score	2nd H	Score	3rd H	Score	4th H	Score
		code		code		code		code	
HEXYL SALICYLATE	SALICYLIQUE ACID	H302	2	H318	3				
	HEXANOL	H226	1	H302	2	H312	2	H319	2
	SULFURIC ACIDE 85	H290	2	H314	3				
	HEXYL SALICYLATE	H315	2	H317	2	H400	5	H410	4

It has been decided that for the next step of the calculation:

H-code having a score of 1 or 2 are not considered. WHY?

All chemicals have multiple H-code that will be scored of 1 or 2. If they were taken in consideration a huge dilution effect of the more severe H-code will be observed.

Hazardous score should reflect as much as possible the hazardousness or not of the perfumery ingredient.

Synthesis of Hexyl Salicylate

Hazardous Score

	Frequency Risk Phrases											
Cat.	1	1 2 3 4 5 6 7 8 9 10 11										
3	1	1	2	2	3	3	3	4	4	4	5	
4	1	2	2	3	3	4	4	5	5	5	5	
5	2	3	3	4	5	5	5	5	5	5	5	

- Category 3: 2 times with the decision matrix means a score of 1.
- Category 4: 1 time with the decision matrix means a score of 1.
- Category 5: 1 time with the decision matrix means a score of 2.

Total score: (1+1+2)/3 = 1.

Hexyl Salicylate has a hazardous score of 1

Synthesis of Hexyl Salicylate

Green Chemistry Score

Hexyl Salicylate has:

- Catalysis score of 1
- Atom Economy score of 1
- Hazardous score of 1

overall green chemistry score of 1

Synthesis of Cyclosal

$$\begin{array}{c|c} & & & \\ \hline & &$$

Atom economy?
Catalysis Score?
Hazardous Score?

Common Fragrance and Flavor Materials: Preparation, Properties and Uses, Horst Surburg, Johannes Panten, **2016**, Wiley-VCH Verlag GmbH & Co. KGaA. DOI:10.1002/9783527693153

Synthesis of Cyclosal

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\$$

Atom economy?
Catalysis Score?
Hazardous Score?

13/13 carbon atoms = 100% Score 1 1/2 catalytic steps = 50% Score 4

Common Fragrance and Flavor Materials: Preparation, Properties and Uses, Horst Surburg, Johannes Panten, **2016**, Wiley-VCH Verlag GmbH & Co. KGaA. DOI:10.1002/9783527693153

Synthesis of Centifol Ether

$$\begin{array}{c} \text{H}_2; \, \text{Pd/C} \\ \text{MeOH} \\ \text{Catalytic} \end{array} \begin{array}{c} \text{(CH}_3\text{O})_2\text{SO}_2 \\ \text{TBAB/NaOH (40\%)} \\ \text{H}_2\text{O} \\ \\ \text{non catalytic} \end{array}$$

Reagents	Reagents Carbon	Total Carbon in Final Pdt	Carbon Economy (%)	Total Rewable Carbon	Renewable Carbon (%)	Catalytic Steps	Total Steps	Catalysis (%)
	10	10		0	0	1	2	50
$(CH_3O)_2SO_2$	2	1		0	0			
Total	12	11	0,92	0	0			

Centifol Ether: E-Factor IN & OUT

	Reactants Reagents	QTY (kg)		
Raw Mats	a-Methyl Cinnamic Aldehyde	5012		
	Raney Ni	251		
	Potassium Acetate	21		
	Hydrogen	137		
	Dimethylsulfate	8613		
	Sodium Hydroxide Sol. 40%	13658	5463.2	
	TBAB	205		
	NaHCO3 Sol. 5%	5127	256.5	
	Water	10255	8194.8	4870.7
Product	Centifolether	5129		
Waste	Waste to be burnt	276		
	Water sent to Waster Water Treatment Plant	37551		
	Spent Catalyst	291		

Total of the mass of reactants, reagents and water. In case of solution the amount of water is re-calculated.

40% NaOH Solution: 13658*0.4 = 5463.2 kg of NaOH and 8194.8 kg of water. 5% NaHCO₃ Solution: 5127*.05 = 256.35 kg of NaHCO₃ and 4870.65 kg of water.

It is mandatory to extract these figures in order to be able to calculate the Water usage of the final product:

Centifol Ether: E-Factor IN & OUT

The number indicated are normalized for 1kg of final product For example:

Dimethylsulfate: 8613/5159 = 1.6695.

Water usage = (8194.8+4870.65+10255)/5159 = 4.52 L/kg of final product.

IN			
Centilfolether	-1	OUT	4.520343
a-Methyl Cinnamic Aldehyde	0.9715	Clean water usage	-0.0535
Raney Ni	0.04865	Waste to be burnt	7.2787
Potassium Acetate	0.00407	Water sent to WWTP	-0.05641
Hydrogen	0.026555	Waste Catalyst	-2.86826
Dimethylsulfate	1.6695		
Sodium Hydroxide	1.05896		
TBAB	0.039736		
NaHCO ₃	0.04969		
E-Factor IN	2.868661		
E-Factor OUT	2.87		
Waste to be burnt	-0.054 kg/kg		
Water usage in L/Kg of Final Product	4.54		

What could be added next?

Energy by ingredients
Temperature of the process: key criteria?
Solvent? Still missing

Product Carbon Footprint (PCF)

Sourcing On site Production Gate to grave Energy Water Process Product Waste

The considered flow of the analysis shown included:

- Raw materials and their transport (resource extraction to be consumed)
- Energy consumption (resource extraction to provide energy)
- Waste generation and release (impact of waste emission)
- Water consumption (impact of water usage)
- Product properties (impact of the ingredient itself when being used)

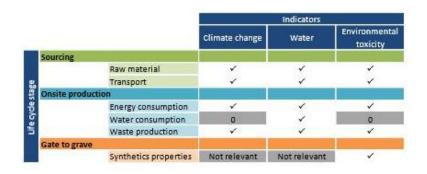
Ingredients Sustainability Index

Developed in partnership with Quantis

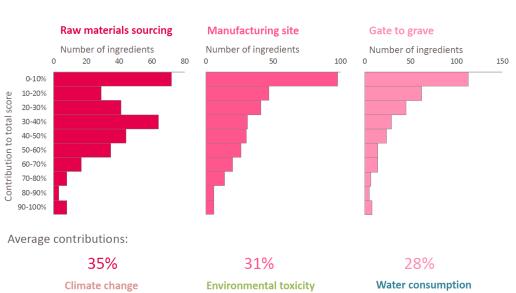
Based on 3 environmental indicators

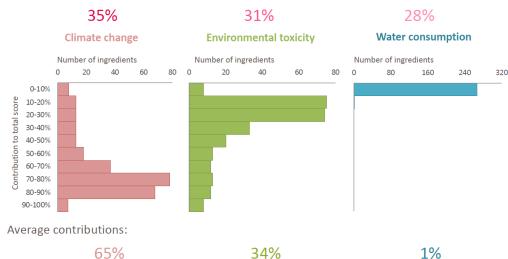
Climate change CO₂

Water depletion


E-toxicity

All stages of the life-cycle of an ingredient considered Sourcing & transportation of raw materials On-site production Product use and disposal


LCA parameters & results


451 unique Perfumery Ingredients modelized in 2017

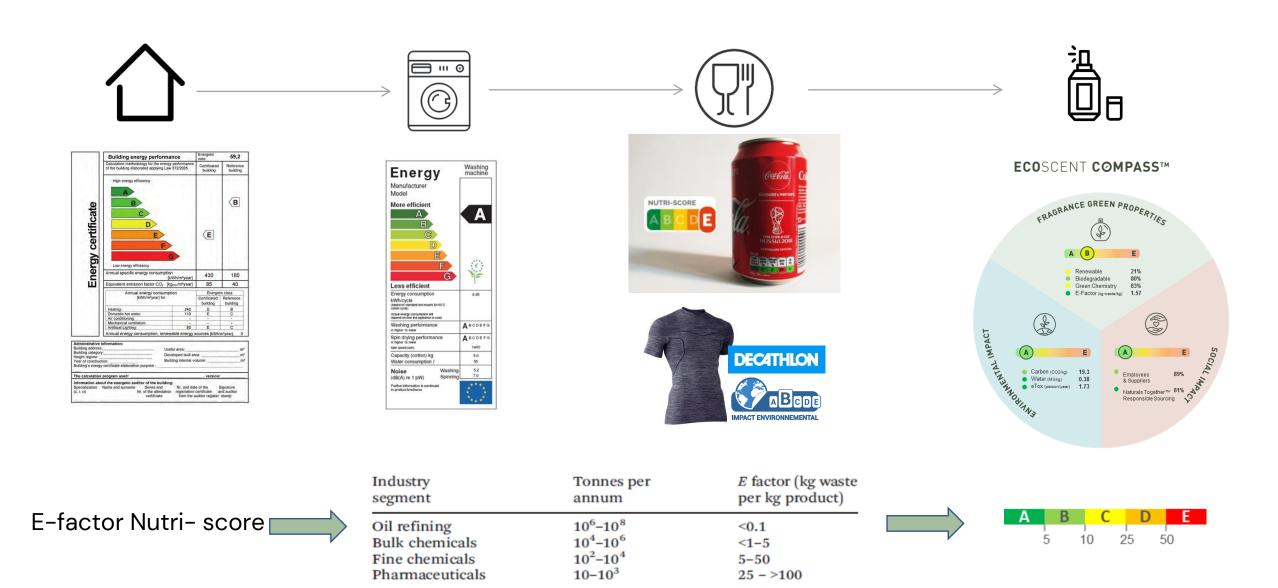
An index score of 1 means that the production of 1 MT of this ingredient has the same impact on the environment as an average global citizen in 1 year.

EcoScent Compass®

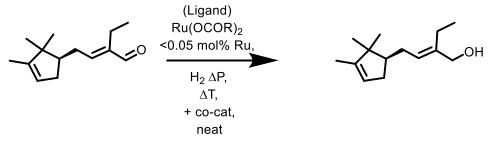
ECOSCENT COMPASS® NEXT GENERATION

	EcoScent Compass® Next Generation	EcoScent Compass® V1
Pillars	3, advanced & reassigned : Circular Creation Climate & Nature impact People & Communities impact	3 Fragrance Green Properties Environmental impact Social impact
Life Cycle Analysis	\checkmark	\checkmark
# Sustainability Data	√ 80	√ 10
Consumer facing claims, including suitability with retailer labels and third-party certifications	√ 65	×
Extended Hero ingredients information for <u>storyproofing</u> , built with an intelligent algor to highlight the most relevant circular ingredients of each creation	✓	×

Continuous improvement of the tool, still the same objectives:



EcoScent Compass[®]: Nutri Score


Spearheading in Catalysis: Dartanol®

Historical process using sodium borohydride

First Firmenich catalyzed hydrogenation technology

Firmenich latest generation catalyst for hydrogenation

Firmenich, WO2013/050297

Review: Dupau, P. Helv. Chim. Acta 2018, 101, e1800144.

100% C use from the raw materials

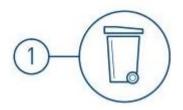
76% green carbon from pine

No protecting group

Ultimately biodegradable

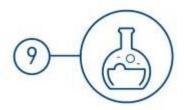
Cutting edge Firmenich hydrogenation technology

E factor 1.85

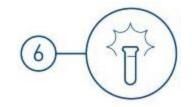

Neat reaction

Spearheading in Catalysis: MimosalTM Synthesis

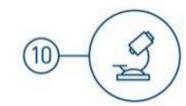
Vinyl ether formation step problematic Muguet aldehyde product thermally unstable


Saudan, L. *et al. ChemCatChem* **2022**, *14*, e2022006. Saudan, L. *et al.* WO2012150053.

Spearheading in Catalysis: MimosalTM Synthesis

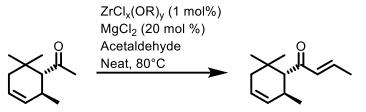

1. Waste Prevention:

E factor = 1.6 vs 12 (Claisen)

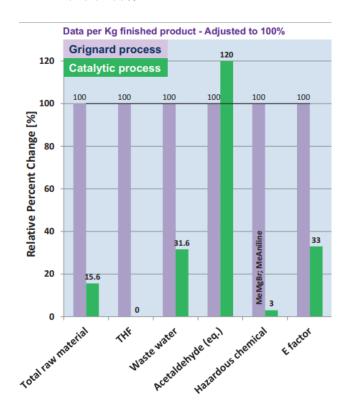


9. Catalysis: Rh cplx (0.005 mol%)

6. Design for Energy Efficiency: t = 60°C vs
185°C (Claisen)


10. Design for DegradationMuguet aldehyde
64% BDG (28 d)

Spearheading in Catalysis: δ -Dasmascone Aldol


Old Process

1/ MeMgX N-Me-Aniline Et₂O 2/ Acetaldehyde O OH Tol. Overall 58%

New Process

Conversion on SM: 32% Yield on Recycled SM: 88%

Jacoby, D. Chimia 2021, 75, 634.

From Pine Tree to Perfume

SylverGreen[®]

Readily

100% RC

Biodegradable

CONVERT EXISTING INGREDIENTS GERANIOL

prenal

75-80%

INTO RC VERSIONS VIA NOVEL CHEMICAL PROCESS FROM MYRCENE

Citral

Geraniol

Geraniol

EXTENSION TO CITRONELLOL & TETRAHYDROGERANIOL

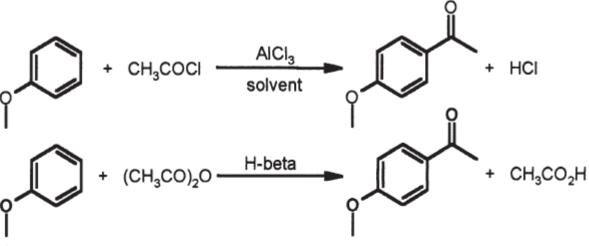
isobutene

(-)-Beta Pinene

From Pine Tree to Perfume

BASF Synthesis of Citral & Geraniol

Others Examples


Comparison (ex-Rhodia) ex-Solvay EssentialCo

Others Examples

Comparison (ex-Rhodia) ex-Solvay EssentialCo

Others Examples

Comparison

Homogeneous

AICl₃ > 1 equivalent

Solvent

Hydrolysis of products

Phase separation

Distillation, organic phase

Solvent recycle

85-95% yield

4.5kg aqueous effluent per kg

Heterogeneous

H-beta, catalytic & regenerable

No solvent

No water necessary

-

Distillation, organic phase

-

> 95% yield / higher purity

0.035kg aqueous effluent per kg

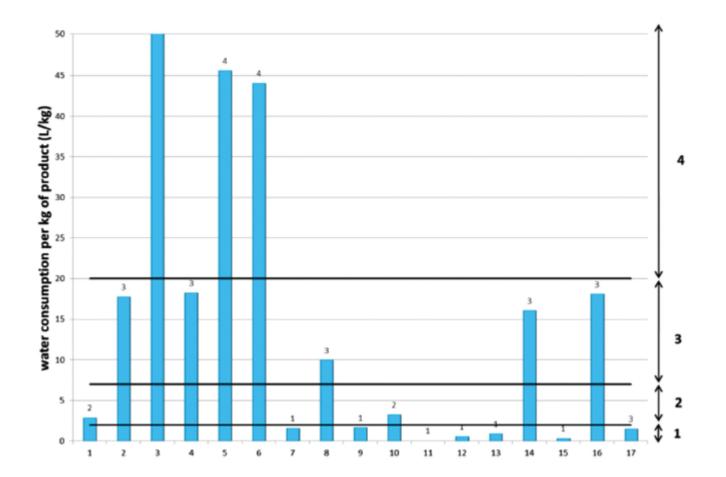
Example from Chimex

L'Oreal/Chimex: Eco-Footprint Metrics

- H₂O: Water consumption
- iL: Raw materials geographical origin
- eFA: Aqueous waste valorization
- eC: Process carbon footprint
- eVS: Synthetic pathway efficiency
- sIOS: Used organic solvents valorization
- rMP: Raw material of renewable origin
- eF: E-factor
- ieMP: environmental impact of raw materials
- ieD: environmental impact of waste

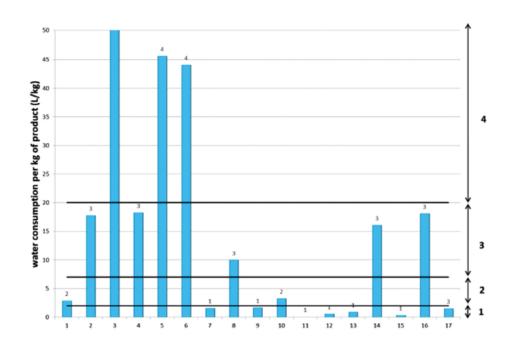
L'Oreal/Chimex: Comparison between 3 tools

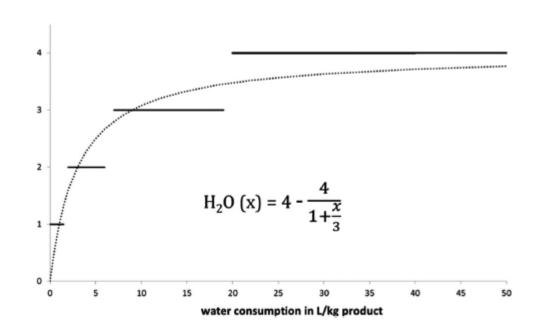
FLASCTM from GSK SEEbalance[©] BASF EPA's GREENSCOPE


			Simple
Green metric	Definition	Calculation	interconnection
Atom economy	Efficiency of the reaction stoichiometry	$AE = \frac{M_{W}(product)}{\sum_{i} M_{w}(reactant_{i})}$	
E-factor	Quantity of waste generated to produce 1 unit of product	$E = \frac{\sum_{i} m(\text{raw material}_{i}) - m_{\text{p}}}{m_{\text{p}}}$	$\mathbf{MI} = E + 1$
Mass intensity/index	Quantity of raw materials needed to produce 1 unit of product	$\mathbf{MI} = \frac{\sum_{i} m(\text{raw material}_{i})}{m_{\text{p}}}$	To a AT
Reaction mass efficiency	Percentage of product obtained considering the total mass of reactants	$RME = \frac{m_{p}}{\sum_{i} m(reactant_{i})}$	$SF = \frac{r \times AE}{RME}$
Stoichiometric factor	Excess of reactants	$SF = \frac{\sum_{i} m(reactant_{i})}{\sum_{i} m_{s}(reactant_{i})}$	
Global material economy	Percentage of product obtained considering the total mass of raw materials	$GME = \frac{m_{p}}{\sum_{i} m(\text{raw material}_{i})}$	$GME = \frac{1}{MI}$

Where: M_w : molecular weight, m_s : stoichiometric mass, m_p : mass of product, r: reaction yield.

Manufacturing footprint:


Cleaning processes, waste treatment (both aqueous & organic), raw materials geographical origin, process carbon footprint


Water usage

Green Chem., 2014, 16, 1139.

Manufacturing footprint: Water usage

Manufacturing footprint:

Aqueous waste valorization (eFA).

Aqueous waste valorization	eFA
Biological water treatment	1
Partial biological water treatment	2
Aqueous waste burying	3
Absence of valorization	4

Used organic solvents valorization (sIOS).

Valorization(%) =
$$\frac{\sum_{i=1}^{n} m_{si} \times f_{si}}{\sum_{i=1}^{n} m_{si}}$$

n = number of solvent; $m_{si} =$ mass of solvent i; $f_{si} =$ valorization factor for solvent i.

Valorization	slOS
90 ≤ Valorization ≤ 100	1
80 ≤ Valorization < 90	2
60 ≤ Valorization < 80	3
0 ≤ Valorization < 60	4

Green Chem., 2014, 16, 1139.

Manufacturing footprint:

Raw materials geographical origin (iL)

EFi = emission factor associated with the transportation of raw material i, in kg of CO2 equivalent per tonne of raw material

D = distance traveled in km by each mean of transportation;

F = emission factor in kilogram of CO₂ equivalent per tonne per kilometer for each mean of transportation

Mean of transportation	Emission factor (kg CO ₂ e per tonne per km)
HGV	0.234
Rail	0.008
Container ship	0.006
Air	2.090

Manufacturing footprint:

Raw materials geographical origin (iL)

Carbon footprint_{RMTransportation} =
$$\frac{\sum_{i=1}^{n} EF_i \times m_i}{m_p}$$

EFi = emission factor of raw material i, in kg CO_2e per tonne n = number of raw material in the process mi = mass of raw material i used in the process, in tonnes mp = mass of product, in tonnes

Manufacturing footprint: Process carbon footprint (eC).

Electricity, steam, fuel, cooling liquids, etc. converted into CO₂ equivalents

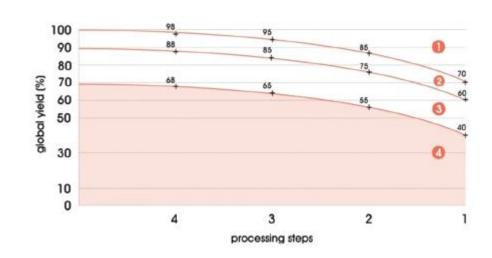
Global operating time
$$=\sum_{i=1}^{m}N_{i}\times d_{i}$$

m = number of different products on one production plant

N_i = number of batches of product i realized in one year

d_i = global production duration for product i, in hours

The carbon footprint of an operating hour is calculated by dividing energy consumption (in kg CO₂e) by operating time. The size and duration of a particular product batch give access to the climate change generated by the production of 1 kg of product


$$eC(x) = 4 - \frac{4}{1 + \frac{x^2}{10}}$$
 expressed in kg CO₂e per kg product

Example: 4 kg CO₂e/kg of product: $Ec(4) = 4 - \frac{4}{1 + \frac{4^2}{10}} = 2.5$

Eco-design footprint: Synthetic pathway efficiency (eVS)

More processing steps (with isolation of chemical species): the more consuming for reagents, solvents, time or energy the process is.

Combining both yield and number of steps, is a very visual and simple performance metric.

Eco-design footprint:

Raw material of renewable origin (rMP)

		REAGENTS					
		<25%	<50%	>50%	>75%		
S	>75%	2	2	1	1		
SOLVENTS	>50%	3	3	2	1		
ATO	<50%	4	3	3	2		
δ	<25%	4	4	3	2		

Eco-design footprint:

Potential environmental impact of raw materials (ieMP)

Potential environmental impact of waste (ieD)

$$ieMP or ieD = \frac{\sum_{i=1}^{n} Qd_i \times m_i}{m_P}$$

Qd; = hazard quotient for the chemical compound i, which can be a raw material (ieMP) or a waste (ieD)

n = number of raw materials or wastes

m_i = mass of compound i involved in the process

 m_P = mass of product formed in the considered synthesis pathway.

Eco-design footprint:

Potential environmental impact of raw materials (ieMP)

Potential environmental impact of waste (ieD)

eMP or ieD =
$$\frac{\sum_{i=1}^{n} Qd_i \times m_i}{m_P}$$

Qd_i has a value of 1 when a compound has no environmental impact and a maximum at 10

EATOS tool was used to assess the impact: Acute human toxicity, chronic human toxicity, ecotoxicology, ozone creation, air pollution, accumulation, degradability, greenhouse effect, ozone depletion, nitrification and acidification.

Based also on a modified E-Factor called EQ where Q is a factor going from 1 (low impact) to 100 or even 1000 from nasty compounds like Cr, ease of recycling, etc.

Sheldon, R. A. CHEMTECH, 1994, 38.

Eissen, M. Metzger, J. O. Chem. Eur. J., 2002, 8, 3580.

[http://www.metzger.chemie.uni-oldenburg.de/eatos/eatosmanual.pdf; access 12.10.2023]

ECO Scale: Beilstein J. Org. Chem., 2006, 2(3), 1.

Eco-design footprint:

Potential environmental impact of raw materials (ieMP)

Potential environmental impact of waste (ieD)

$$ieMP \text{ or } ieD = rac{\sum\limits_{i=1}^{n} Qd_i \times m_i}{m_P}$$

$$Qd_i = \sum_{j=1}^p k_j \times Qcat_{i,j} \text{ with } \sum_{j=1}^p k_j = 1$$

p = number of parameters considered

Qcati, j = regarding the substance i, value of the quotient related to parameter j;

kj = weighting coefficient for parameter j.

Weight the parameters and the same coefficient was applied: kj = 1/5

5 parameters:

Chronic human toxicity: CMR category if existing,

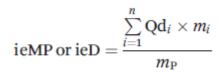
Acute human toxicity: hazard labels, oral LD50 (rat), dermal LD50 (rabbit), inhalation LC50 (rat),

Acute ecotoxicology: LC50 (fish, 96 h), EC50 (daphnia, 48 h), IC50 (algae, 72 h),

Bioaccumulation (log P or log Kow),

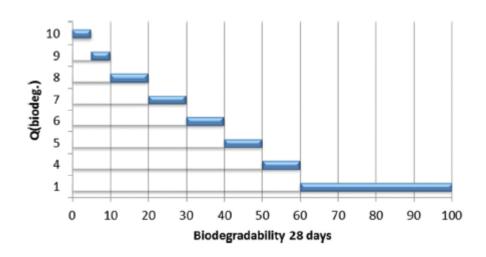
Biodegradability (degradation after 28 days).

Sheldon, R. A. CHEMTECH, 1994, 38.

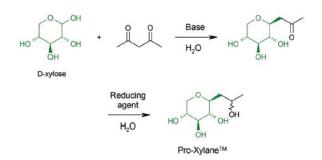

Eissen, M. Metzger, J. O. Chem. Eur. J., 2002, 8, 3580.

ECO Scale: Beilstein J. Org. Chem., 2006, 2(3), 1.

Eco-design footprint:

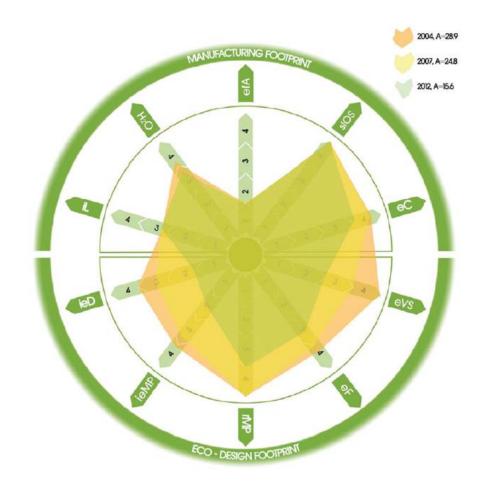

Potential environmental impact of raw materials (ieMP)

Potential environmental impact of waste (ieD)



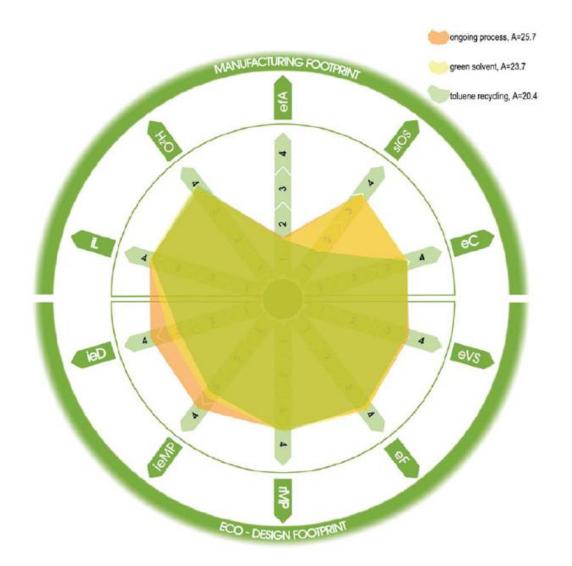
$$\mathrm{Qd}_i = \sum_{j=1}^p k_j imes \mathrm{Qcat}_{i,j} ext{ with } \sum_{j=1}^p k_j = 1$$

Example for Biodegradation:



Example: Pro-XylaneTM

Process	Base	Reducing agent	Global yield	E-factor
2004 (1st pilot scale process)	NaHCO ₃	NaBH ₄	43%	14.9
2007 (1st industrial process)	NaHCO ₃	Metal catalyst	70%	10.4
2012 (Current industrial process)	NaOH	Metal catalyst	85%	5.3


Process	ieMP	ieMP value	ieD	ieD value
2004 (1st pilot scale process)	18.6	3.1	16.9	3.0
2007 (1st industrial process) 2012 (Current industrial process)	15.2 7.9	2.8 1.5	13.5 6.0	2.6 1.1

Example: Mexoryl® SX

	Ongoing process		Toluene recycling		Non-toxic solvent of renewable origin	
Indicator	Data	Value	Data	Value	Data	Value
<i>iL</i> : raw materials transportation	1.6 kg CO₂e per kg	3.3	1.4 kg CO₂e per kg	3.2	1.6 kg CO₂e per kg	3.3
H ₂ O: water consumption	17.8 L kg ⁻¹	3.4	17.8 L kg ⁻¹	3.4	17.8 L kg ⁻¹	3.4
eFA: aqueous waste valorization	Water treatment plant	1	Water treatment plant	1	Water treatment plant	1
slOS: organic solvents valorization	Toluene: incineration Pyridine: incineration MeOH: incineration Acetone: recycling	3	Toluene: recycling Pyridine: incineration MeOH: incineration Acetone: recycling	1	Toluene: incineration Pyridine: incineration MeOH: incineration Acetone: recycling	3
eC: energetic carbon footprint	5.4 kg CO₂e per kg	3	5.4 kg CO ₂ e per kg	3	5.4 kg CO₂e per kg	3
eVS: synthetic pathway efficiency	2 steps, 72%	3	2 steps, 72%	3	2 steps, 72%	3
eF: E-factor	13.7	3.3	11.8	3.2	13.7	3.3
rMP: raw materials of renewable origin	Reagents: 13% Solvents: 59%	3	Reagents: 13% Solvents: 68%	3	Reagents: 13% Solvents: 73%	3
ieMP: environmental impact of raw materials	22.9	3.4	14.6	2.7	15.9	2.9
ieD: environmental impact of waste	21.4	3.3	13.1	2.5	14.4	2.7

Example: Mexoryl® SX

New «Green Score» Tool for: pharmaceutical and personal care products (PPCPs)

The tool includes several important features:

- (1) A balance between assessing inherent chemical and supply chain hazards
- (2) a disincentive to use raw materials with low scores or lack of data by weighting their impact to reduce the score further
- (3) a certainty score to provide insight on the level of confidence in the Green Score for a given ingredient or chemical component.

3 distinct categories: human health (HH), ecosystem health (ECO), and environmental impact (ENV).

New «Green Score» Tool for: pharmaceutical and personal care products (PPCPs)

Key Point: individual chemicals are combined to make ingredients, and ingredients are combined to make formulas.

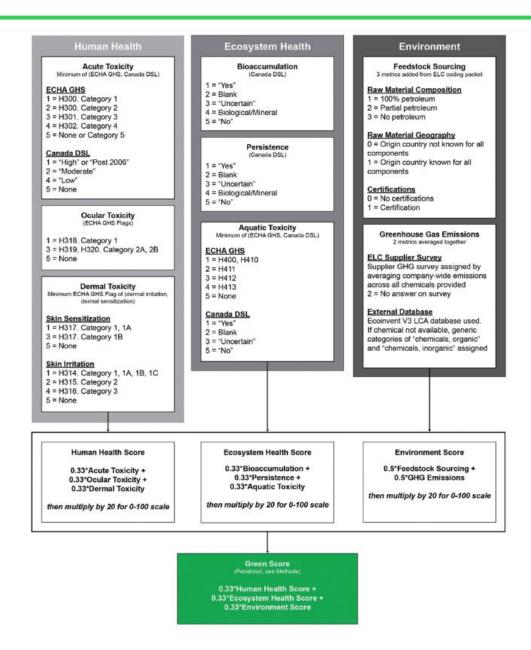
Step 1:

The chemical composition of each ingredient is established from internal registration records, each of the 2300 + unique components is linked to internal and external chemical data sets, and water components are removed from the scoring.

Step 2:

Each ingredient is scored on metrics covering HH, ECO, and ENV categories. HH and ECO metrics are based on inherent chemical properties and carried out at the component level, while ENV metrics are largely applied at the ingredient level. Each of these metric scores has an associated data quality rating based on a tiered system of data source preferences.

Step 3:


Numeric penalties (i.e., disincentives) are applied to any component or ingredient that receives the lowest score (1) for any metric.

Step 4:

All metric and category scoring is mass averaged up to the ingredient level and a final Green Score is calculated.

Step 5:

Ingredient scores are mass averaged up to the formula level and evaluated against benchmarks.

For the classification GHS and Canadian DSL was used

Endpoint description/Source	Score	Score assignment rubric
Acute toxicity: Assesses the inherent lethality hazard via	1	Acute toxicity 1 GHS classification OR DSL HH priorities label is "high" or "post 2006"
ingestion, inhalation, and dermal absorption exposure routes. The	2	Acute toxicity 2 GHS classification OR DSL HH priorities label is "moderate"
primary data sources are the	3	Acute toxicity 3 GHS classification
GHS classification for acute toxicity and the Canada DSL HH	4	Acute toxicity 4 GHS classification OR DSL HH priorities label is "low"
priorities classification. If data are present in both the GHS and DSL, the lower (more conservative) score is taken	5	No acute toxicity GHS classifications AND no DSL HH priorities label is present
Ocular toxicity: Assesses the	1	Eye damage GHS classification
inherent hazard to cause eye	3	Eye irritation GHS classification
damage and/or irritation. The primary data sources are the GHS classifications for eye irritation and eye damage	5	No eye damage or eye irritation GHS classifications present
Dermal toxicity: Assesses the inherent hazard to cause dermal	1	Skin sensitization 1A OR any skin corrosion GHS classification
corrosion, irritation, and/or	2	Any skin irritation GHS classification
sensitization. The primary data sources are the GHS	3	Skin sensitization 1B or skin sensitization 1 GHS classification
classifications for skin corrosion,	4	Skin mild irritation GHS classification
skin irritation, skin mild irritation, and skin sensitization	5	No skin corrosion, skin irritation, skin mild irritation, or skin sensitization GHS classifications present
OSI Domestic Substance List: GHS G	lohally Ha	rmonized System of Classification and Labelling of

DSL, Domestic Substance List; GHS, Globally Harmonized System of Classification and Labelling of Chemicals; HH, human health.

HH Scoring

https://www.cosmos-standard.org/en/

Env. Scoring

Endpoint description/Source	Score	Score assignment rubric
Feedstock sourcing: Assesses for ingredient's environmental impact of sourcing, degree of	1	Ingredient source is wholly of petroleum origin
supply chain transparency, and whether it has a third-party sustainability certification. All data are obtained from ELC suppliers. Three	2	Ingredient source is partially of petroleum origin and partially of biological or minera origin
independent submetrics are added to score this metric:	3	Ingredient source is wholly of biological or mineral origin
- Ingredient composition: Assesses for % of petroleum-derived content	+1 Point	All ingredient components have an associated country of origin
 Ingredient geography: Assesses for sourcing transparency Certifications: Assesses for any RSPO or organic certifications 	+1 Point	Ingredient is RSPO certified (e.g., mass balance) or certified organic (USDA or COSMOS)
GHG emissions: Assesses ingredient's GHG impact. Calculated by averaging 2 independent	1	GHG supplier value/modelled emissions factor is >1000
submetrics: - GHG supplier emissions: Scopes 1 & 2 emissions effect per kilogram of product, as provided by ELC suppliers	2	GHG supplier emissions: No GHG emissions information is provided by the supplier
- GHG modelled emissions: Scopes 1, 2 & 3 emissions effect of each ingredient component, as obtained from the ecoinvent 3 database, per	5 – [log ₁₀ (x) + 1]	GHG supplier value/modelled emissions factor (x) is >0.1 but <1000
the component chemical classification. The ingredient GHG modelled emissions score is calculated via the mass-weighted average of its	5	GHG supplier value/modelled emissions factor is <0.1

COSMOS, COSMetic Organic and Natural Standard; ELC, Estée Lauder Companies; GHG, greenhouse gas; RSPO, Roundtable on Sustainable Palm Oil; USDA, US Department of Agriculture.

components' scores

Endpoint description/Source	Score	Score assignment rubric
Bioaccumulation: Assesses the	1	DSL bioaccumulation label is "yes"
propensity to bioaccumulate up the food chain when free in the environment.	2	DSL bioaccumulation label is blank
The primary data source is the Canada DSL bioaccumulation classification. The	3	DSL bioaccumulation label is "uncertain"
secondary data source is the component's feedstock sourcing data, as provided by the raw material supplier	4	Component is not listed in the DSL, and feedstock source is wholly biological or mineral
to ELC	5	DSL bioaccumulation label is "no"
Persistence: Assesses the propensity to persist (i.e., not break down or biodegrade) when free in the environment. The primary data source is the Canada DSL persistence classification. The secondary data source is the component's feedstock sourcing data, as provided by the raw material supplier to ELC	1 2 3 4	DSL persistence label is "yes" DSL persistence label is blank DSL persistence label is "uncertain" Component is not listed in the DSL, and feedstock source is wholly biological or mineral DSL persistence label is "no"
Aquatic toxicity: Assesses the inherent hazard in the aquatic environment, both acutely and	1	Aquatic acute 1 or aquatic chronic 1 GHS classification OR DSL inherently toxic to aquatic organisms label is "yes"
chronically. The primary data sources are the GHS classifications for aquatic acute toxicity and aquatic chronic	2	Aquatic chronic 2 GHS classification OR DSL inherently toxic to aquatic organisms label is blank
toxicity, along with the DSL inherently toxic to aquatic organisms classification. The more conservative score is taken. If	3	Aquatic chronic 3 GHS classification OR DSL inherently toxic to aquatic organisms label is "uncertain"
no information is present in the DSL database, it is scored according to the GHS	4 5	Aquatic chronic 4 GHS classification No aquatic acute or aquatic chronic GHS classifications AND DSL inherently toxic to

DSL, Domestic Substance List; ELC, Estée Lauder Companies; GHS, Globally Harmonized System of Classification and Labelling of Chemicals.

Ecosystem Health Scoring

aquatic organisms label is "no"

For HH & ECO: endpoint metrics incomplete or not available

Default type	Acute toxicity	Ocular toxicity	Dermal toxicity	Bioaccumulation	Persistence	Aquatic toxicity
Biological	5	3	3	4	4	5
Mineral	3	3	3	4	4	3
Fluoro compound	2	2	2	3	1	2
Colorant	5	3	3	3	2	2
Polymer	4	3	3	5	1	4
Siloxane/Silicone	4	2	2	5	1	4
Natural	4	4	4	5	5	4
metabolite Petroleum	2	2	2	3	3	2
Unknown	3	3	3	3	3	3

Certainty Score Assignment

Endpoint	Score	Score assignment
All HH and ECO endpoints	2	From default data value
	3	From proxy data value
	5	From GHS or DSL data
ENV feedstock sourcing	3	All raw materials
ENV greenhouse gas emissions	2	From default data value
	4	From individual chemical

DSL, Domestic Substance List; ECO, ecosystem health; ENV, environment; GHS, Globally Harmonized System of Classification and Labelling of Chemicals; HH, human health.

Step 1: The chemical composition of each ingredient is established from internal registration records, each of the 2300 + unique components is linked to internal and external chemical data sets, and water components are removed from the scoring

$$P'_{ij} = \frac{P_{ij}}{1 - w_j}$$

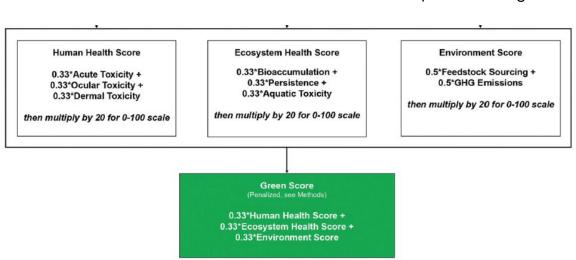
P'ij = adjusted proportion of component i in ingredient j.

Pij = original proportion of component i in ingredient j.

wj = proportion of water in ingredient j.

From suppliers: Scopes 1 and 2 emissions (according to the GHG protocol) per kilogram of manufactured ingredient

Step 4: All metric and category scoring is mass averaged up to the ingredient level and a final Green Score is calculated.


$$I_{jk} = \sum_{i=1}^{n} C_{ijk} \cdot P'_{ij}$$

ljk = ingredient-level score for ingredient j on metric k.

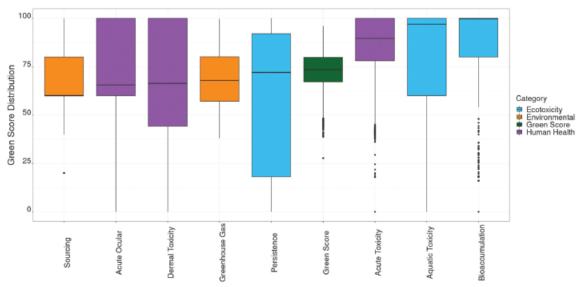
Cijk = component-level score for component i in ingredient j on metric k.

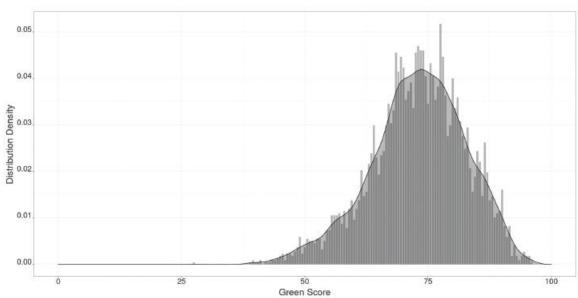
P'ij = adjusted proportion of component i in ingredient j.

n = number of components in ingredient j.

Step 5: Ingredient scores are mass averaged up to the formula level and evaluated against benchmarks

$$F_I = \sum_{j=1}^r rac{I_{jI} \cdot P_{jI}}{100 \cdot \left(1 - \left(rac{w_I}{100}
ight)
ight)}$$

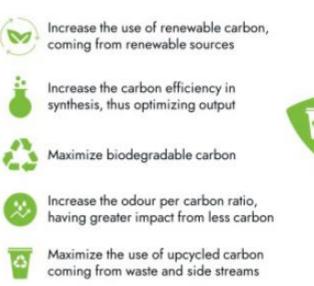

FI = formula Green Score for formula I.


Ijl = ingredient Green Score for ingredient j in formula I.

Pjl = percentage of ingredient j in formula I.

wl = percentage of water in formula I.

r = number of ingredients in formula I.



		SOURCE	HUMAN HEALTH HAZARDS			ECOSYSTEM HEALTH HAZARDS			ENVIRONMENTAL HAZARDS		
INCI NAME	NGREDIENT FORM		HH ACUTE	HH OCULAR	HH DERMAL	ECO BIOACC	ECO PERS	ECO AQTOX	ENV SOURCE	ENV GHG	GREEN SCORE
1. BEESWAX	Solid	Animal related	100	100	100	80	80	100	100	82	93
2. CITRUS AURANTIUM DULCIS (ORANGE) PEEL WAX	Wax	Plant	100	100	100	80	80	100	80	74	88
3. POLYGLYCERYL-3 BEESWAX	Granular	Animal related	100	100	100	80	80	100	80	72	88
4. BEESWAX	Wax	Animal related	100	100	100	80	80	100	80	69	87
5. JOJOBA ESTERS	Powder	Plant	100	100	100	60	60	100	80	83	85
6. SYNTHETIC BEESWAX	Solid	Plant	100	100	100	100	100	18	80	79	84
7. SYNTHETIC WAX	Liquid	Petroleum	80	100	100	100	100	100	40	78	83
8. PARAFFIN	Solid	Petroleum	80	100	100	100	98	100	40	74	83
9. SYNTHETIC BEESWAX	Solid	Plant-Petroleum	100	100	100	100	100	18	80	57	80
10. PARAFFIN	Wax	Petroleum	80	100	100	100	100	98	40	57	80
11. LAVANDULA ANGUSTIFOLIA (LAVENDER) FLOWER WA	X Wax	Plant	100	60	60	80	80	100	60	88	78
12. CARNAUBA	Flakes	Plant	100	60	100	60	60	100	80	65	78
13. ORYZA SATIVA (RICE) BRAN WAX	Solid	Plant	100	60	60	60	60	100	80	88	77
14. OZOKERITE	Solid	Petroleum	100	100	100	60	60	100	40	62	74
15. EUPHORBIA CERIFERA (CANDELILLA) WAX	Granular	Plant	80	60	60	60	60	100	80	65	71
16. POLYETHYLENE/MICROCRYSTALLINE WAX	Solid	Petroleum	70	90	100	100	16	100	40	57	68
17. MICROCRYSTALLINE WAX	Wax	Petroleum	40	60	100	100	18	98	60	68	67
18. MICROCRYSTALLINE WAX	Pellets	Petroleum	40	60	100	100	18	98	40	73	64
19. ROSA CENTIFOLIA/DAMASCENA FLOWER WAX	Wax	Plant	90	16	40	70	70	28	80	65	59
20. CERESIN	Wax	Petroleum	40	40	40	60	60	60	40	55	49

			HUMAN HEALTH HAZARDS: DATA CERTAINTY			ECOSYSTEM HEALTH HAZARDS: DATA CERTAINTY			DATA CERTAINTY	
INCI NAME	INGREDIENT FORM SOURCE		HH ACUTE	HH OCULAR	HH DERMAL	ECO BIOACC	ECO PERS	ECO AQTOX	ENV SOURCE	ENV GHG
1. BEESWAX	Solid	Animal related	5	5	5	2	2	5	3	4
2. CITRUS AURANTIUM DULCIS (ORANGE) PEEL WAX	Wax	Plant	5	5	5	2	2	5	3	4
3. POLYGLYCERYL-3 BEESWAX	Granular	Animal related	5	5	5	2	2	5	3	4
4. BEESWAX	Wax	Animal related	5	5	5	2	2	5	3	4
5. JOJOBA ESTERS	Powder	Plant	5	5	5	5	5	5	3	4
6. SYNTHETIC BEESWAX	Solid	Plant	5	3	3	5	5	5	3	3
7. SYNTHETIC WAX	Liquid	Petroleum	5	5	5	5	5	5	3	3
8. PARAFFIN	Solid	Petroleum	5	5.	5	5	5	5	3	3
9. SYNTHETIC BEESWAX	Solid	Plant-Petroleum	5	3	3	5	5	5	3	2
10. PARAFFIN	Wax	Petroleum	5	5	5	5	5	5	3	2
11. LAVANDULA ANGUSTIFOLIA (LAVENDER) FLOWER WAX	Wax	Plant	2	2	2	2	2	2	3	4
12. CARNAUBA	Flakes	Plant	5	5	5	5	5	5	3	3
13. ORYZA SATIVA (RICE) BRAN WAX	Solid	Plant	5	2	2	5	5	5	3	4
14. OZOKERITE	Solid	Petroleum	5	5	5	2	2	5	3	3
15. EUPHORBIA CERIFERA (CANDELILLA) WAX	Granular	Plant	5	2	2	5	5	5	3	3
16. POLYETHYLENE/MICROCRYSTALLINE WAX	Solid	Petroleum	5	5	5	5	5	5	3	3
17. MICROCRYSTALLINE WAX	Wax	Petroleum	5	5	-5	5	5	5	3	3
18. MICROCRYSTALLINE WAX	Pellets	Petroleum	5	5	5	5	5	5	3	3
19. ROSA CENTIFOLIA/DAMASCENA FLOWER WAX	Wax	Plant	5	5	5	4	4	5	3	3
20. CERESIN	Wax	Petroleum	5	2	2	5	5	5	3	3

It focuses on:

- Increasing the use of renewable Carbon
- Increasing Carbon efficiency in synthesis
- Maximising biodegradable Carbon
- Increasing the 'odour per Carbon ratio' with high impact material
- Using upcycled Carbon from side streams

Undecavertol Synthesis

Drawbacks of Route A & B? Route C was selected.

C

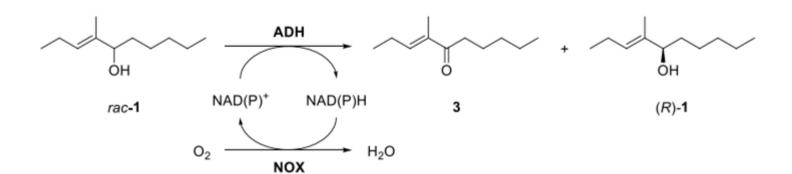
ADH

OH

NAD(P)⁺

NAD(P)H

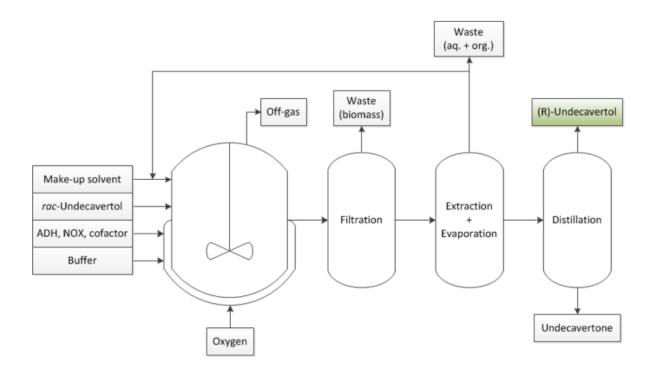
O


NOX

$$H_2O$$
 (R) -1

Undecavertol Synthesis

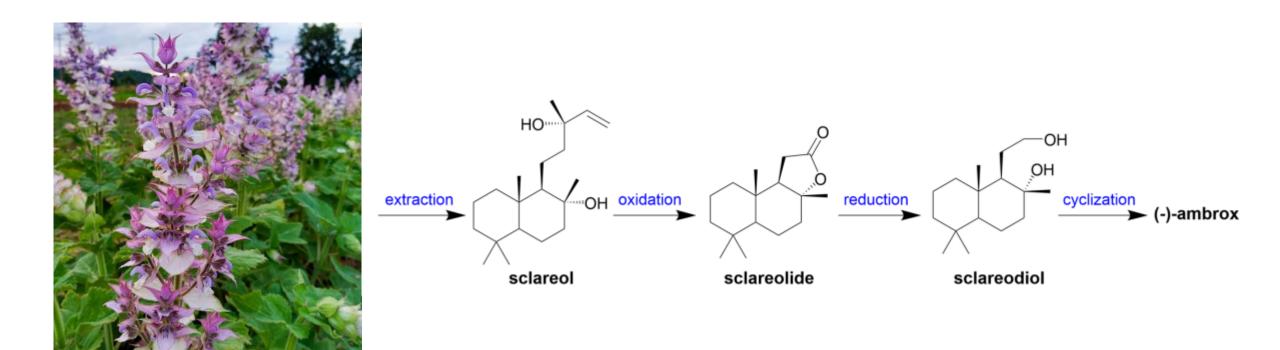
Optimization of:


- ADH enzyme
- NOX enzyme
- Flow rate of O₂
- Buffer (pH of the mixture)
- Concentration

Comparison of the Conditions and Performances of the Three Pilot Runs on the 100 L Scale

batch	substrate mass [kg]	substrate conc. [g L ⁻¹]	(S)-1 conv. [%]	ee [%]	ADH conc. [g kg _{substrate} ⁻¹]	NOX conc. [g kg _{substrate} ⁻¹]	initial temp. $[^{\circ}C]$
1	50	420	99.4 (16 h)	98.8	9.9	2.2	16
2	55	448	99.6 (14 h)	99.1	10.0	2.2	20
3	64	426	99.7 (13 h)	99.5	9.9	2.2	22

Undecavertol Synthesis

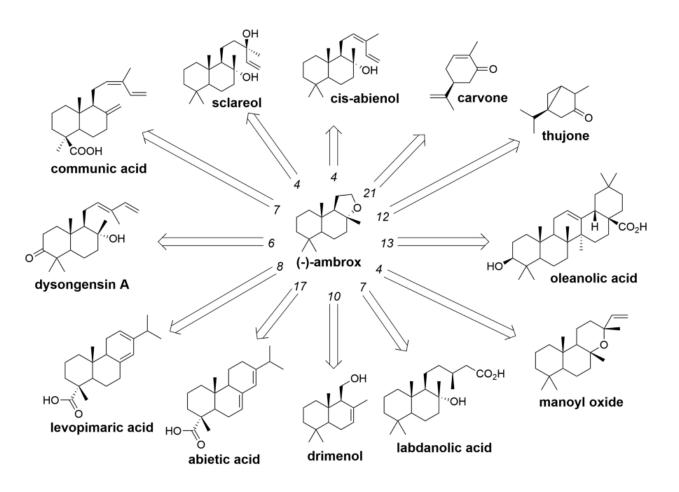

process metric	0.5 L (old enzyme batches)	0.6 L (new enzyme batches)	125 L (second pilot reaction)
conversion [%] product concentration [g L ⁻¹]	49.9 340.6	49.9 212.5	49.8 224.0
space-time yield $[g L^{-1} h^{-1}]$	21.3	13.3 ^a	14.0

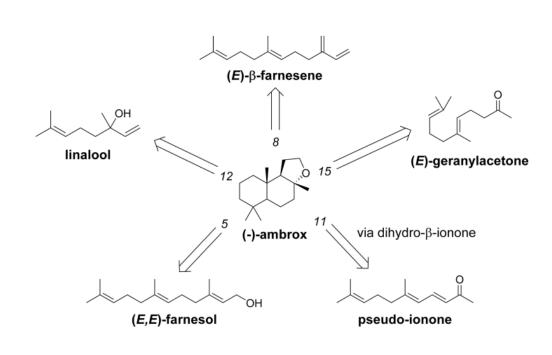
Undecavertol Synthesis

85 kg of (R)-Undecavertol in three batches performed in a 200 L pilot-plant reactor

(-)-Ambrox[©]/Ambrofix[™] Synthesis

(-)-Ambrox[©]/Ambrofix[™] Current Synthesis




J. Agric. Food Chem. **2023**, 71, 5042.

Review: https://doi.org/10.1021/acs.jafc.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

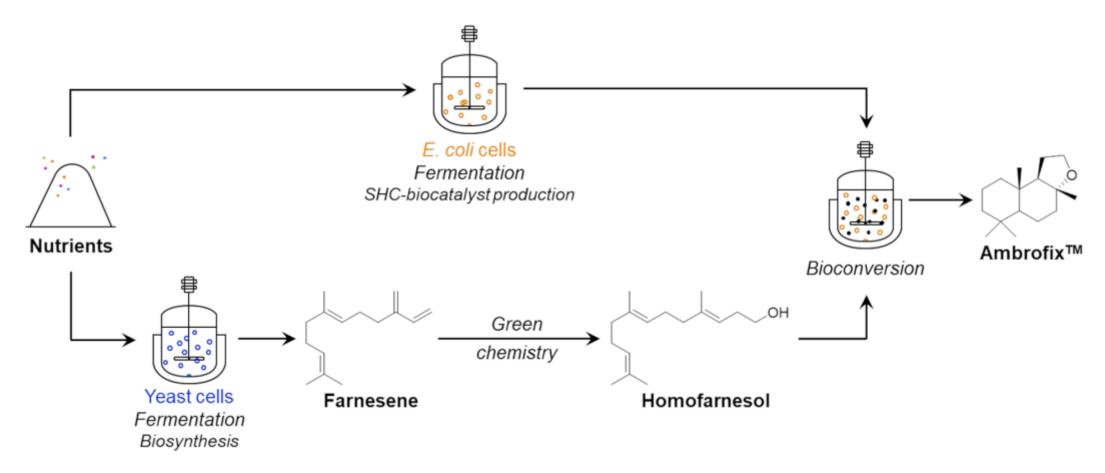
Adv. Synth. Catal. **2018**, 360, 2339.

(-)-Ambrox[©]/Ambrofix[™] Known Synthesis

J. Agric. Food Chem. 2023, 71, 5042.

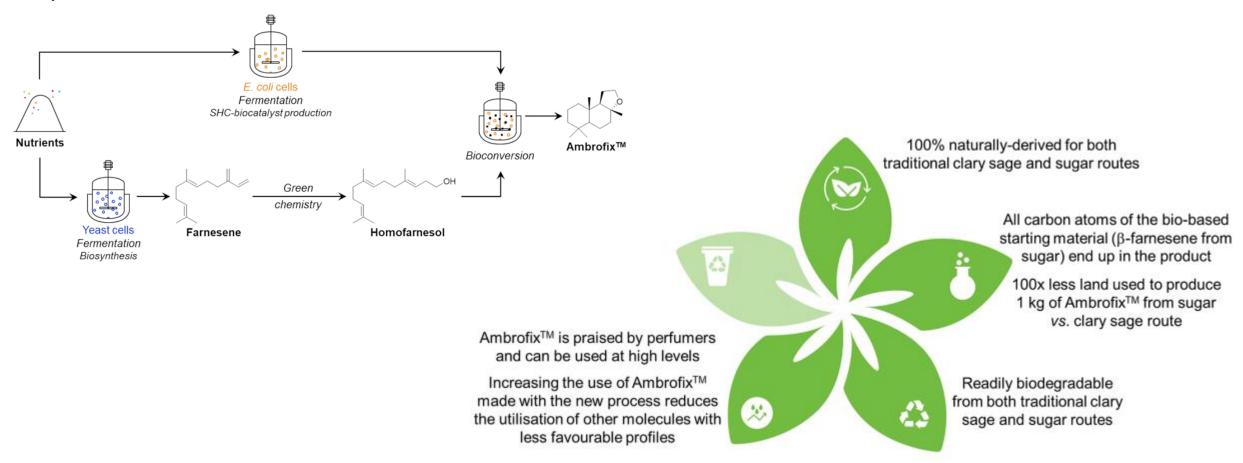
Review: https://doi.org/10.1021/acs.jafc.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Adv. Synth. Catal. 2018, 360, 2339.


Synthetic and Natural Precursors of (E,E)-Homofarnesol

J. Agric. Food Chem. **2023**, 71, 5042.

Review: https://doi.org/10.1021/acs.jafc.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Adv. Synth. Catal. **2018**, 360, 2339. See also: Helv. Chim. Acta **2014**, 97, 197.

Synthetic and Natural Precursors of (E,E)-Homofarnesol

J. Agric. Food Chem. **2023**, 71, 5042. Review: https://doi.org/10.1021/acs.jafc.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as Adv. Synth. Catal. **2018**, 360, 2339.

Synthetic and Natural Precursors of (E,E)-Homofarnesol

J. Agric. Food Chem. **2023**, 71, 5042.


Review: https://doi.org/10.1021/acs.jafc.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

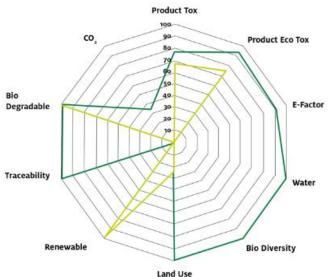
Adv. Synth. Catal. **2018**, 360, 2339.

Symrise: Product Sustainability Score Card

- Eco-friendly chemistry
- Resource-efficient production
- New technology and digitalization opportunities

Symrise: Product Sustainability Score Card

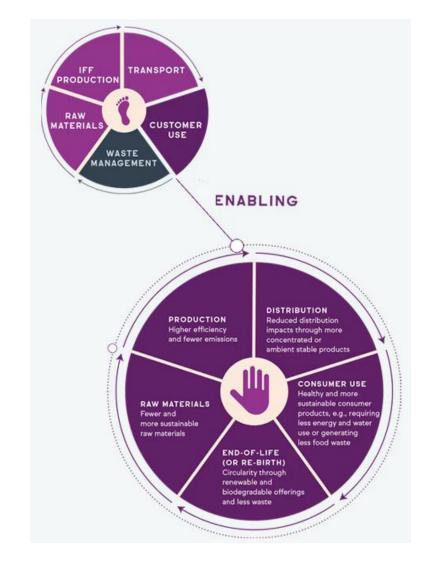
Symrise: Product Sustainability Score Card


Menthol:

The scorecard reveals:

Synthetic variation produced by Symrise offers benefits over the long term: ranging from a safe, clearly traceable basis of raw materials to comparably energy-efficient, low-waste production and an-end-product of outstanding purity and quality.

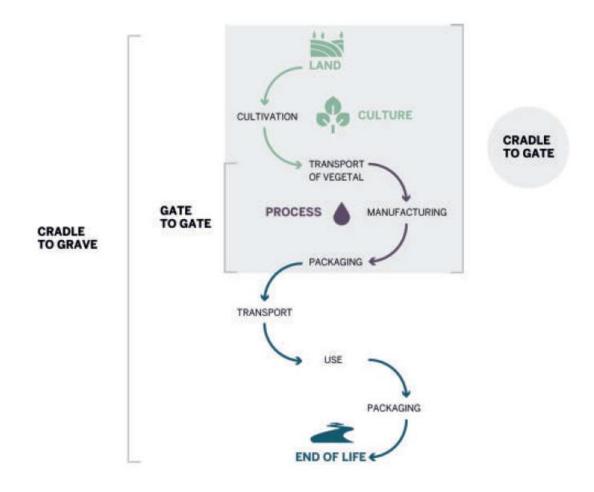
The scorecard provides an overview of this information, with synthetic menthol performing better in a variety of categories:


- "water efficiency"
- "traceability"
- "land use"
- "biodiversity"

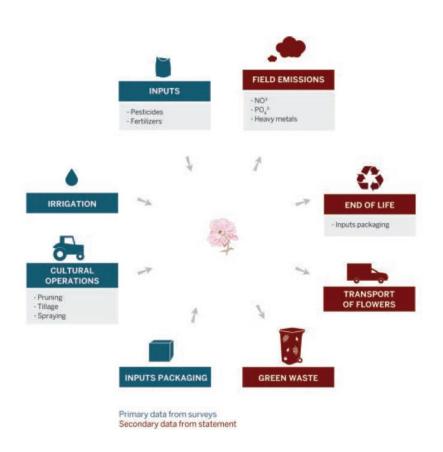
LCA:

Where we believe our products can make one of the biggest differences from a sustainability perspective is through their positive life cycle impacts during the use phase. The scale of benefits we can enable for our customers (IFF's "handprint") far outweighs IFF's manufacturing and operational "footprint".

The scope typically involves all stages of the life cycle, from raw material acquisition until the product leaves the production factory (cradle-to-gate) and ideally also includes distribution, use, and end-of-life scenarios (cradle-to-grave/cradle)

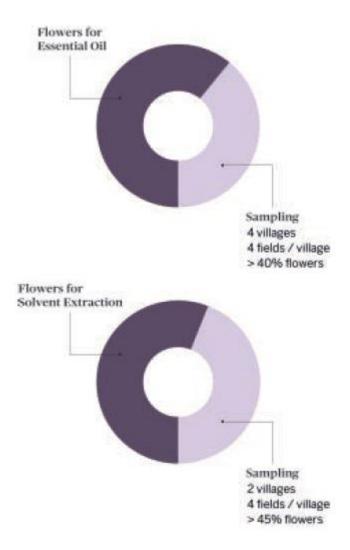

Green Chemistry Score:

From the R&D phase to commercial production, IFF scientists use our proprietary Green Chemistry Assessment Tool to quantitatively score the overall sustainability of our ingredient catalog, products and processes.

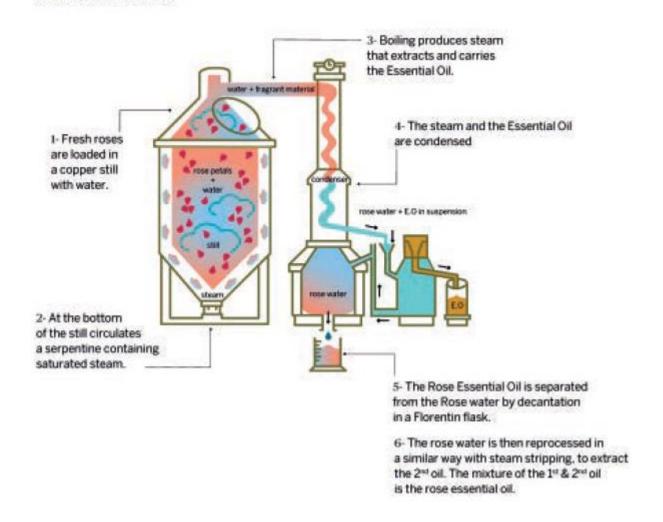

Waste Reduction through Green Chemistry:

This includes converting the byproducts of our natural product processes into useful fragrance ingredients. For example, our terpene-based chemistry utilizes an abundant, readily-available natural raw material – a pine-based side product from the paper industry – to create a number of high-performing fragrance ingredients.

LCA of Rose Extracts



LCA of Rose Extracts


To produce 1kg of rose oil roughly 4 MT of flowers are needed To produce 4MT of floweres 1ha of rose fields is needed As the average size of a rose field owned by a Turkish farmer is 0.2 ha, The production of 100 kg rose oil requires: 500 farmers

LCA of Rose Extracts

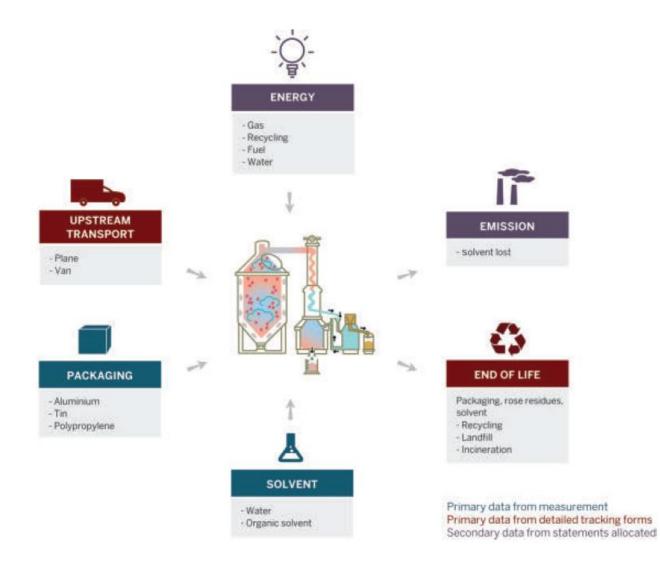
LCA of Rose Extracts

THE DISTILLATION:

ROSE ESSENTIAL OIL

Hydrodistillation About 4000 Kg flowers / kg

ROSE CONCRETE


Solvent extraction 400 Kg flowers / kg

ROSE ARSOLUTE

Alcohol purification 1.5 Kg concrete / kg

LCA of Rose Extracts

LCA of Rose Extracts

Environmental Indicators

CLIMATE CHANGE (Kg CDa eq.)

The climate change impact calculation is based on the global warning potential (GWP) over 100 years of various greenhouse gas as prescribed by the Intergovernmental Panel on Climate Change (IPCC, 2007).

CONSUMED WATER (m³)

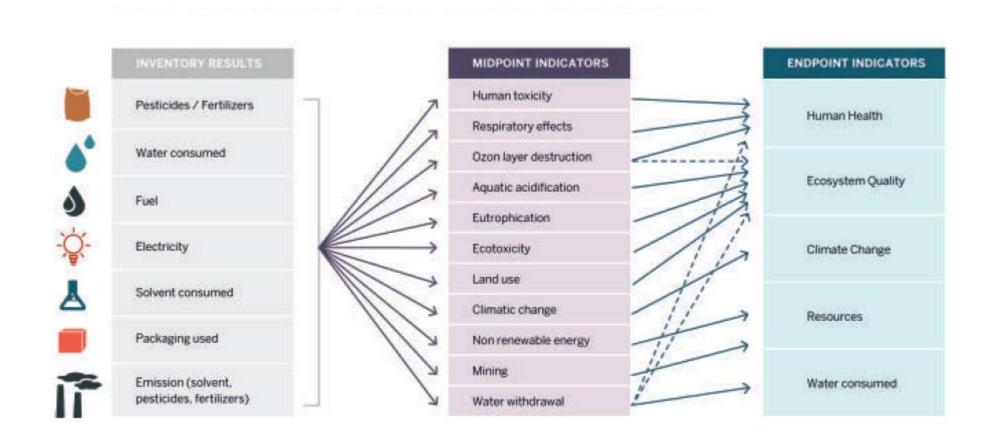
The consumed water impact represents the **total consumed fresh water**, that is to say the total fresh water withdrawal, less the total water discharged.

ECOSYSTEM QUALITY (PDF*m2*yr)

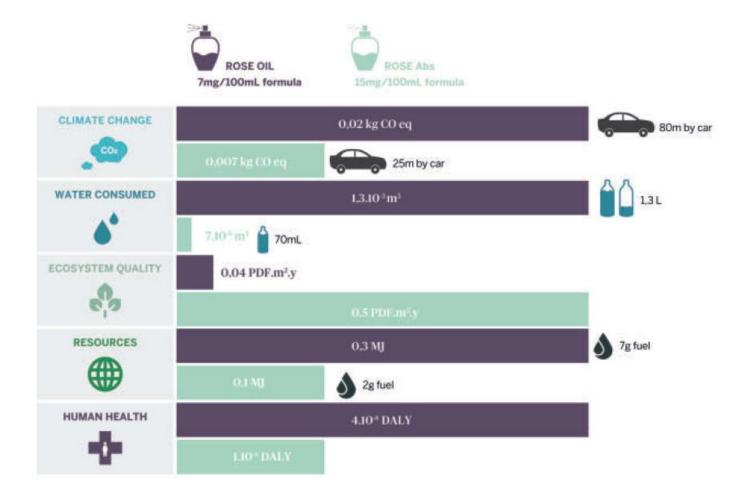
The ecosystem quality impact represents the percentage of species that will disappear on a given period of time. It includes the release of substances that cause acidification and eutrophication of soil and water, the toxicity affecting wildlife, the land use. Expressed in Percentage of species that will disappear on a given area for a given period of time.

RESOURCES (MJ)

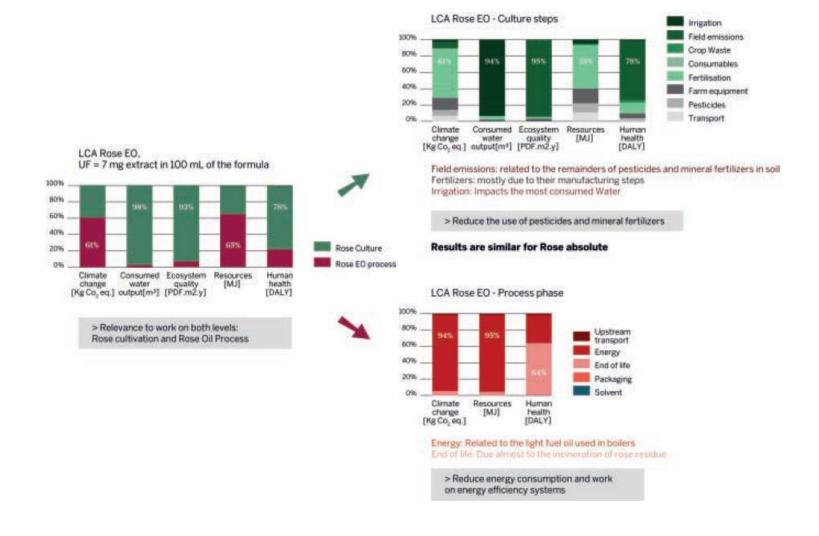
The resources impacts combines the use of primary energy from non-renewable sources (fossil and nuclear) and the extraction of ore. Expressed in equivalent primary energy i.e. fossil energy (MJ).


HUMAN HEALTH (DALY)

The Human health impact takes into account the substances that affect the human because they are toxic (carcinogenic and non-carcinogenic) or they have respiratory effects, or that induce an increase of UV radiation from the destruction of the ozone layer.


Expressed in Disability Adjusted Life Years.

LCA of Rose Extracts


Effect on substances on the Environment

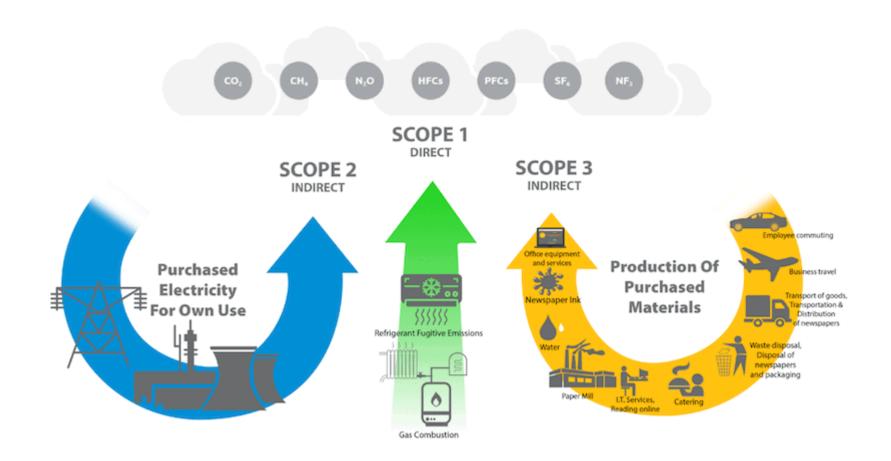
LCA of Rose Extracts

LCA of Rose Essential oil

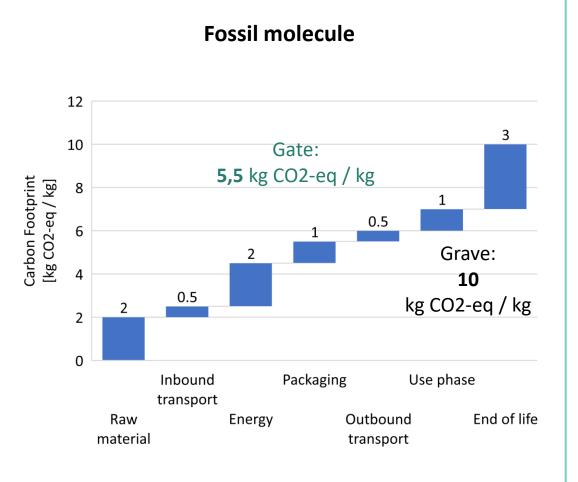
LCA of Rose Absolute

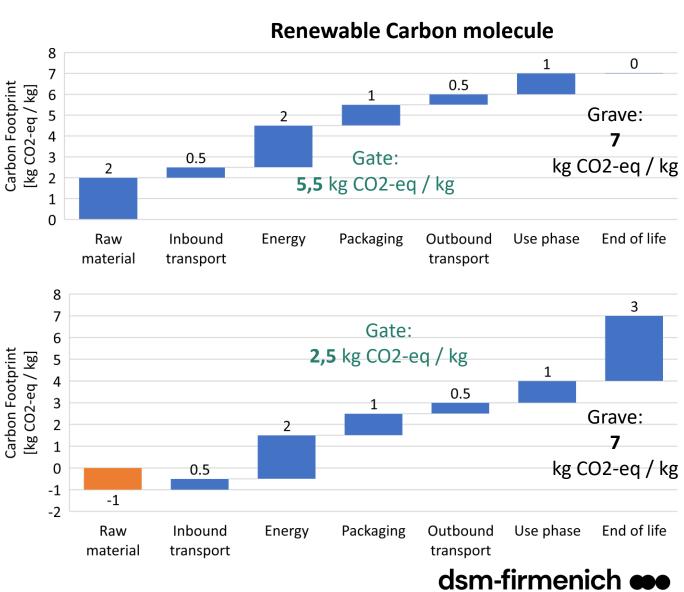
Conclusion?

By performing up to 15 LCA on natural extracts:

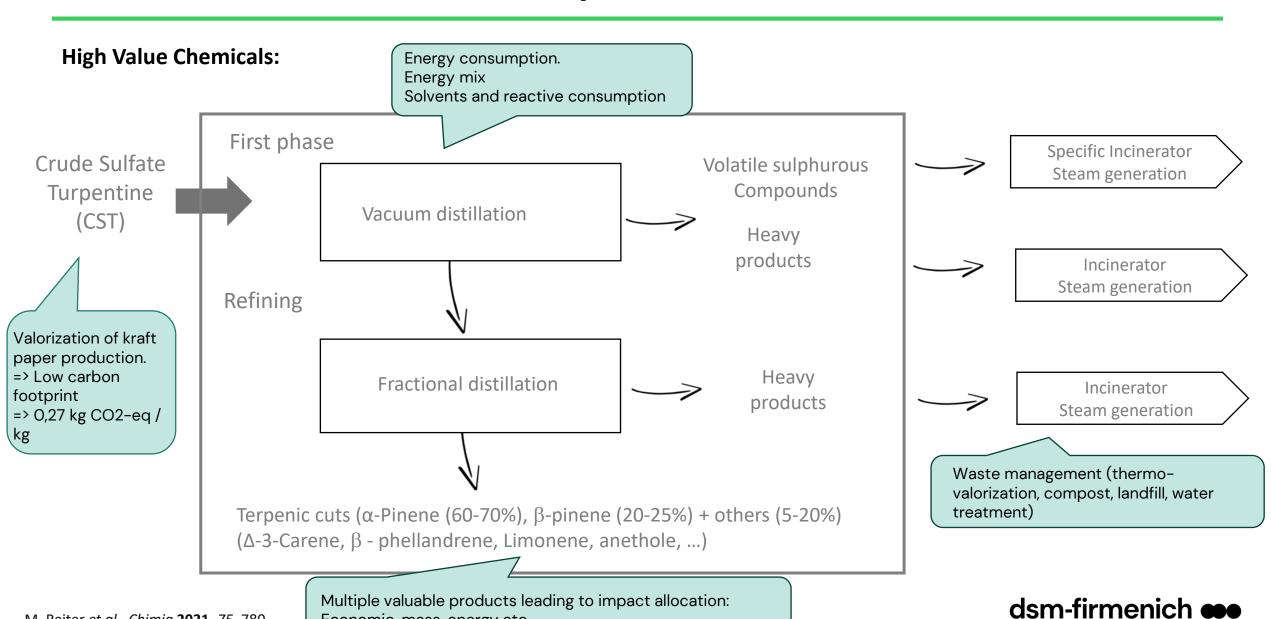

- Some material or energy flows are recurrently the most impacting.
- The use of mineral fertilizers and pesticides has one of the highest impacts on the resources and climate change
- Crop irrigation has the highest impact on the water consumed. In the case of Turkish rose, these results are overvalued since the sampling selected irrigated fields in higher proportion than the total fields.
- Use fewer pesticides, develop alternatives, favor organic fertilizers with long action, rationalize the use of water through drip irrigation systems and closely monitor the plant's needs.

Conclusion?

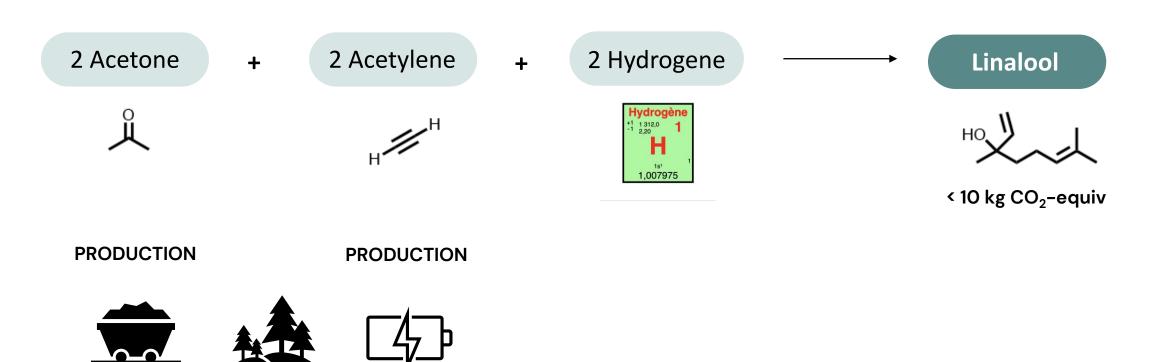

By performing up to 15 LCA on natural extracts:


- The extraction yield is in general the most impacting factor
- The amount of fuel or gas to generate steam for heating during the extraction or the evaporation is one of the most impacting factors at the process.
- The solvent loss during the evaporation is also one of the most impacting factors at the process stage. New Greener Solvent?
- Transportation by plane is a major impacting factor. As flowers grow worldwide, planes are sometimes used to transport raw materials.

LCA



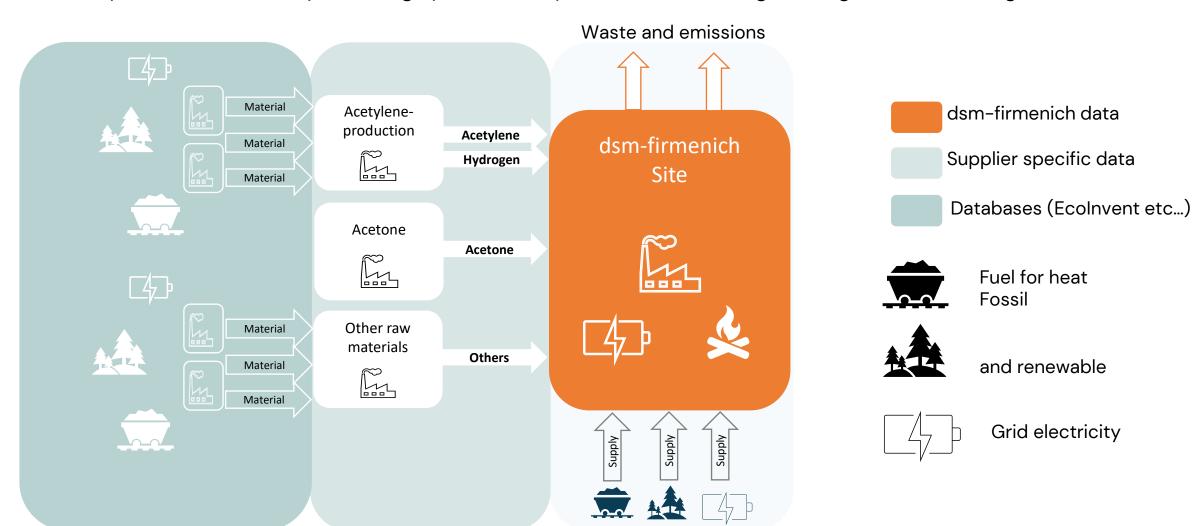
Including Renewable Carbon benefit at gate level


LCA: alpha-Pinene

Economic, mass, energy etc.

M. Reiter et al., Chimia 2021, 75, 780.

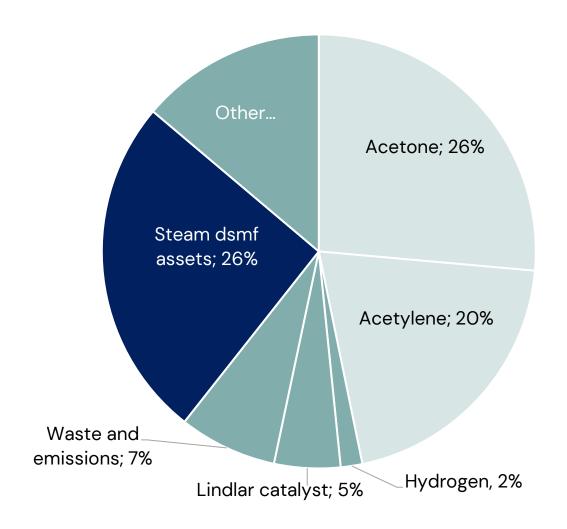
Carbon neutrality; Net-zero Emission


Net-zero: SBTi requires reduction by 90%. Only 10% can be compensated

Implementing changes in manufacturing processes take several years. How will the footprint of that process change be in several years?

WASTE & EMISSIONS

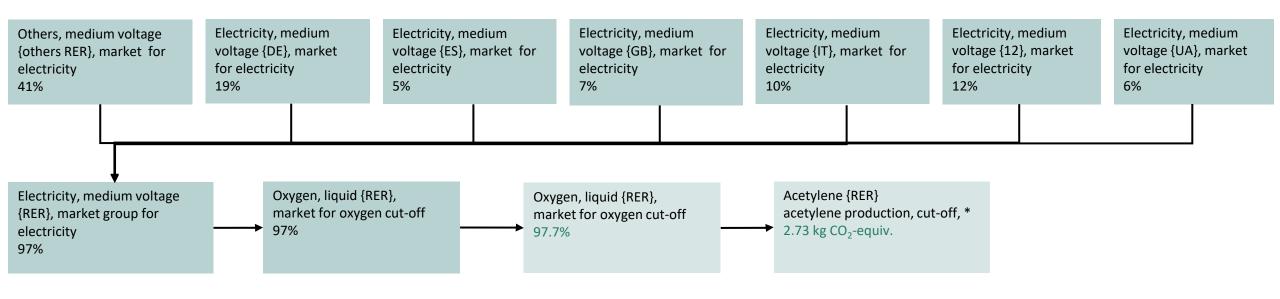
Creation of LCA models of our own processes


Current footprint is calculated by summing up of consumption data, consisting of foreground and background data

Carbon footprint contribution...

Result from LCA-model based on today's data (own data, supplier specific and Ecoinvent) Today's footprint of linalool is well below 10 kg CO₂-equiv.

2024



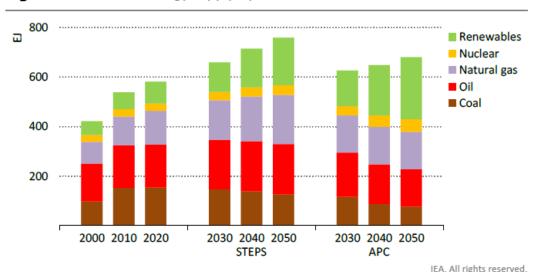
Replacement of natural gas as heat source for steam generation

Purchase acetone produced on a different technology, e.g. from CO₂

Acetylene? From different technology? Replace acetylene by a different building block?

The main impact from acetylene production is electricity

- · Environmental impacts from electricity from the grid are background data
- Appropriate conclusion: Switch to acetylene made by another route?
- Currently also alternative acetylene production processes require a high amount of electricity
- Then rather change to a process without acetylene?



The data shown are from the Ecolovent model.

But the world does not stand still

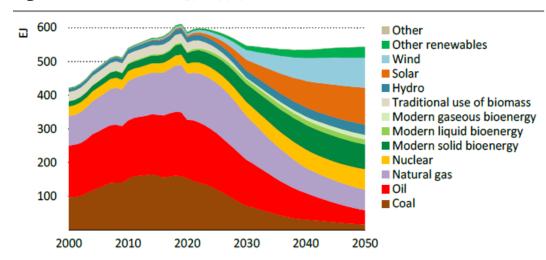
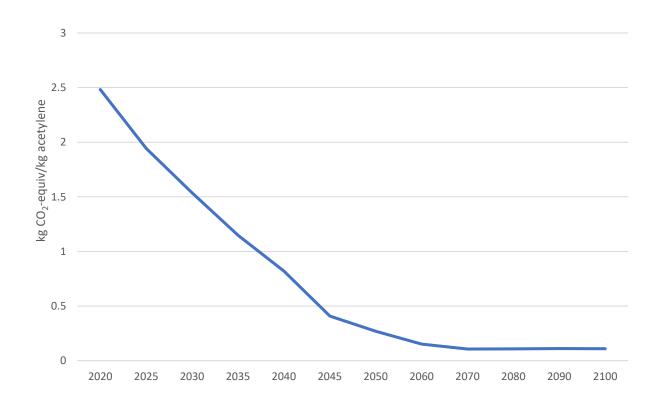

The energy transition will lead to shifts in energy sources ⇒ towards more renewable energy sources.

Figure 1.12 ▶ Total energy supply by source in STEPS and APC

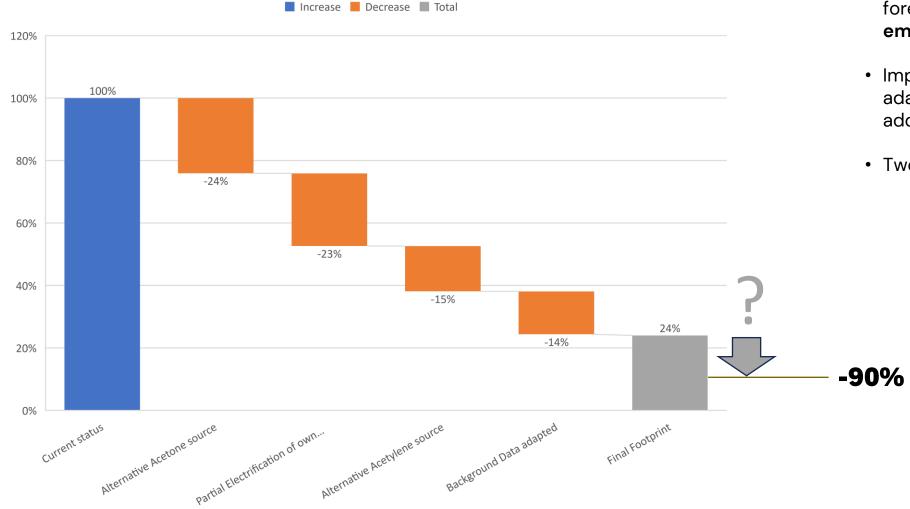
Announced net zero pledges lift renewables in the APC from 12% of total energy supply in 2020 to 35% in 2050, mainly at the expense of coal and oil

Figure 2.5 ▷ Total energy supply in the NZE

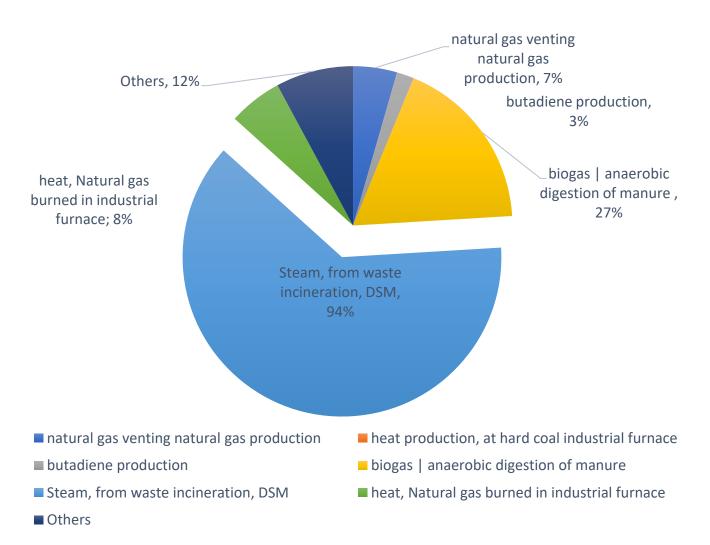

IEA. All rights reserved.

Renewables and nuclear power displace most fossil fuel use in the NZE, and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050

Will that make a difference to Carbon Footprints? How to implement that transition into LCA-models?


Potential Acetylene Carbon Footprint change

- Acetylene modelled with Ecolnvent-REMIND SSP2 Base superstructure
- An example for strong influence of background data on Carbon Footprint
- What does that mean for Linalool's footprint?


Implementation of various measures

Foreground data could help to lower the footprint by 62 % Including the background total 76% reduction

- Potential implementation of improvement measures calculated by foreground data changes result in 62% emissions reduction.
- Implementation of background data adaptation using premise results in additional 14% emissions reduction.
- Two key questions:
 - What are the remaining impacts?
 - ➤ How to reduce these to achieve 90% emissions reduction?

Where is the remaining footprint from?

Potential carbon footprint:

And after energy transition gives access to a large share of renewable electricity

Linalool's footprint would be reduced by 75%

Main remaining contributor:

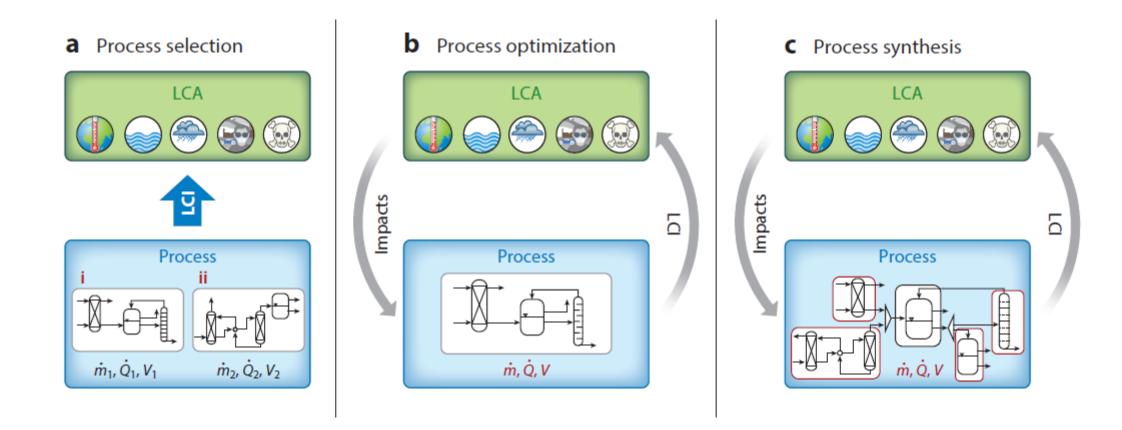
Heat generated from fossil-derived distillation/ recycling sludges

These can only be avoided when all materials used come from renewable sources.

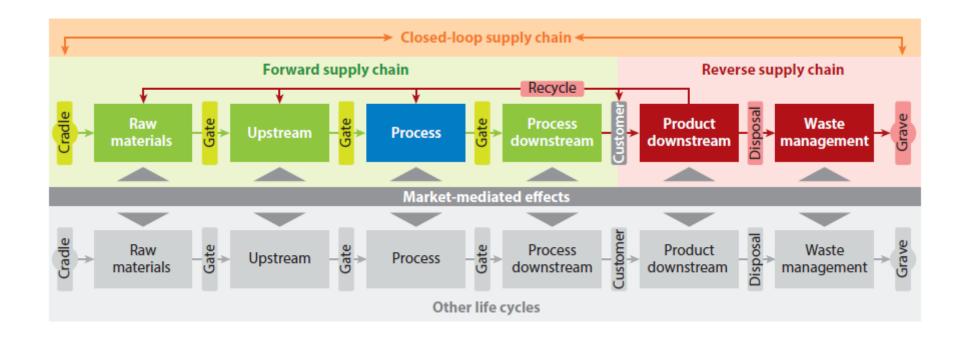
Data Exchange Methodology

- Carbon Footprint calculated with IPCC 2021 (AR6)
- Description of the scope (including/excluding etc.)
- Allocation
- Primary / Secondary data share
- Data Quality Rating

Compliant with:


Compliant with the PEF v. 3.1 but requiring specific parameters such as:

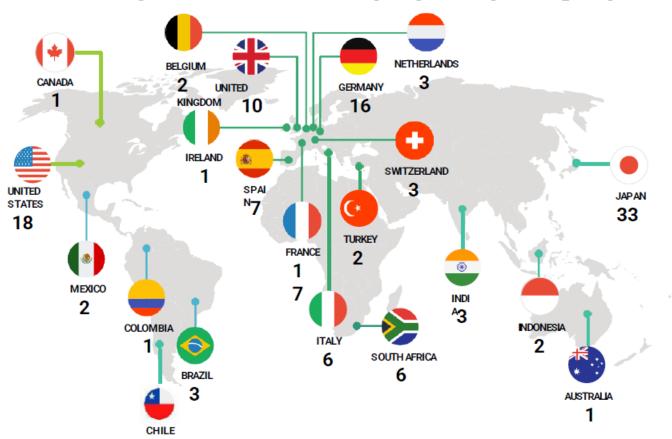
- Cradle to gate
- Cut-off
- Only carbon footprint
- Possibility to include or exclude renewable carbon benefit.
- Specific DQR


LCA

Integration of life cycle assessment (LCA) and process design ranges over various levels

LCA

LCA in Supply Chain Management (SCM)



IFRA: The International Fragrance Association

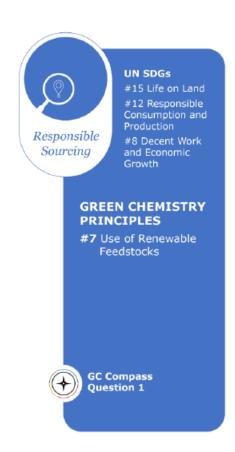
IFRA: The International Fragrance Association

National/regional breakdown by signatory company headquarters

19	NORTH AMERICA
7	LATIN AMERICA
67	EUROPE
6	AFRICA
39	ASIA-PACIFIC

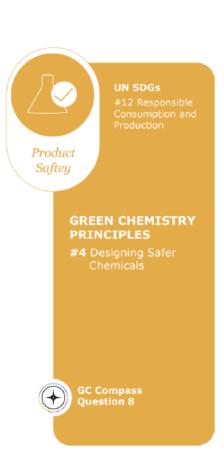
IFRA: The International Fragrance Association

- Further developed since its 2020 launch and the first Report in 2021, 'Charter 2.0' reinforces an ambitious approach to sustainability
- Updated text covers alternatives to animal testing, Green Chemistry, workplace culture, 'essentiality' of flavors and fragrances
- Since 2021, more companies have fulfilled or are making progress towards fulfilling the 17 Charter commitments
- The 2023 Report also covers the activities of the new Sustainability Committee, the Sustainability Community, and work on carbon footprint, deforestation, Green Chemistry, and harmonised definitions


- The Compass tool provides direction for scientists and other industry professionals towards the conscious design of greener, safer and more sustainable chemical choices.
- The Compass tool is inclusive, voluntary, global and open to all interested stakeholders through a public consultation.

Perfumery & Flavorist - Oct - 2024

Scope and Disclaimer: The IFRA Green Chemistry Compass


- Still in development
- General guidance tool for how to consciously design greener, safer and more sustainable chemical choices
- Simplified high-level overview tool looking gate to gate, suitable for in-house assessment; not to be shared externally
- Not meant to determine whether a product meets the EU Safe and Sustainable by Design (SSbD)criteria which are still under development
- Not a substitute for a company's own due diligence on ingredients and processes
- Compliments other tools used by industry
- Helps identify opportunities for improvement

Scope and Disclaimer: The IFRA Green Chemistry Compass

9 Green Chemistry Principles were prioritized against the 5 Pillars of the IFRA-IOFI Sustainability Charter

	1.Waste Prevention	2.Atom Economy	3.Less Hazardous Chemical Synthesis	4.Designing Safer Chemicals	5.Safer Solvents & Auxiliaries	6.Design for Energy Efficiency	7.Use of Renewable Feedstocks	8.Reduce Derivatives	9.Catalysis	10.Design for Degradation	11.Real- Time Pollution Prevention	12.Safer Chemistry for Accident Prevention
Responsible Sourcing							Question 1					
Environmental footprint and climate change	Question 4					Question 2			Question 3	Question 5		
Well-Being of Employees			Question 6		Question 7							Question 6
Product Safety				Question 8								
Transparency and Partnerships												

GC Compass: Guiding Questions

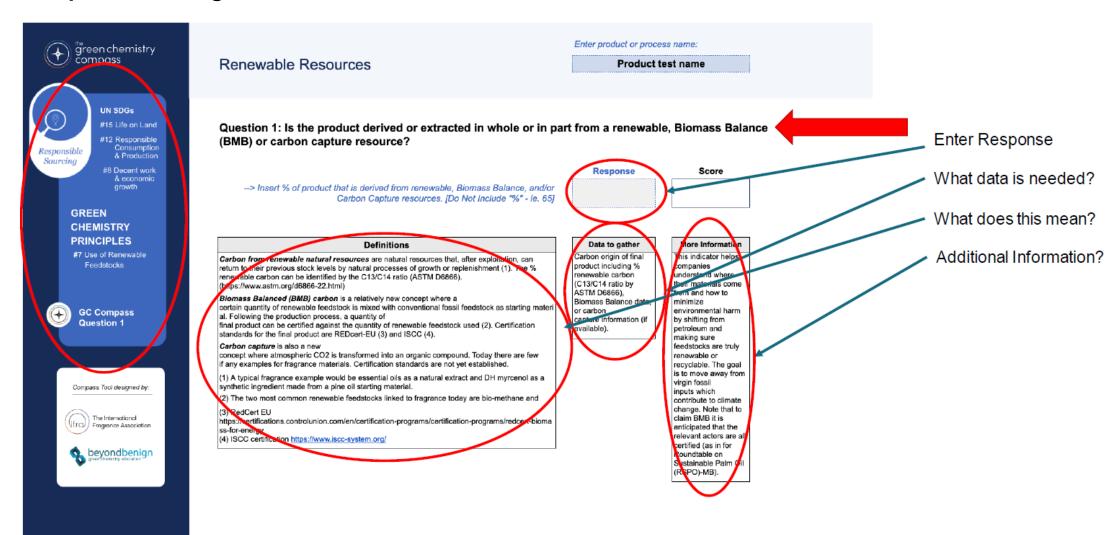
Category and Question

Responsible Sourcing

1. Is the product derived or extracted in whole or in part from a renewable, BMB, carbon capture resource?

Environmental footprint & Climate Change

- 2. a) To what extent is the process for making this product energy intensive?
 - b) Is renewable energy used in whole or in part in the process?
- 3. a) What type of catalyst, if any, is used in this process?
 - b) What is the mol-recycle number for the catalyst used (if applicable)?
- 4. How much waste is generated in the process?
- 5. To what extent is the product or formulation biodegradable?

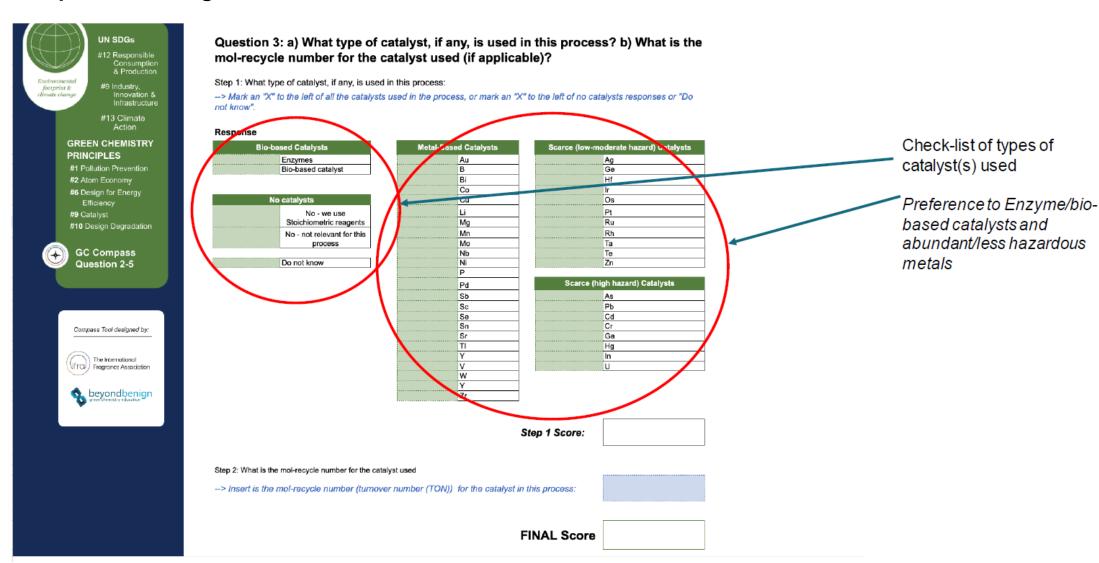

Well-Being of Employees

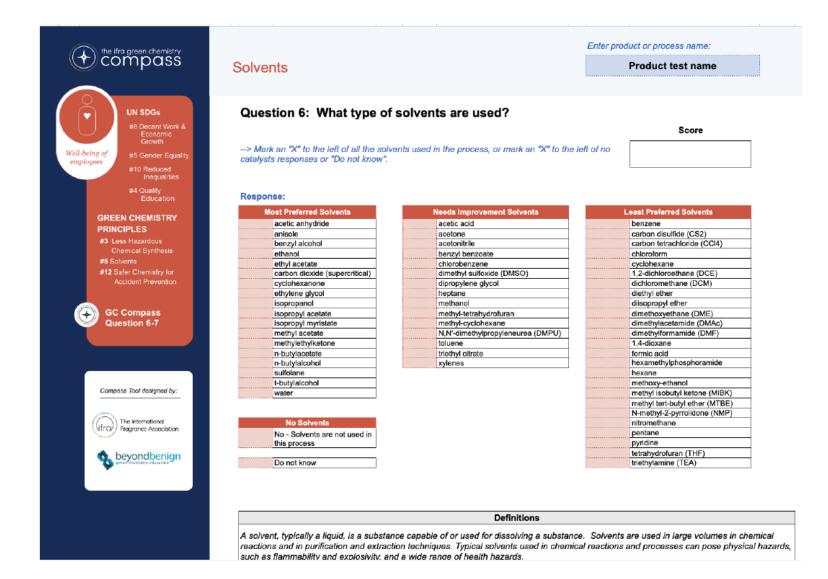
- 6. What type of solvents are used?
- 7. Do the reagents or raw materials pose any physical, health or environmental hazards?

Product Safety

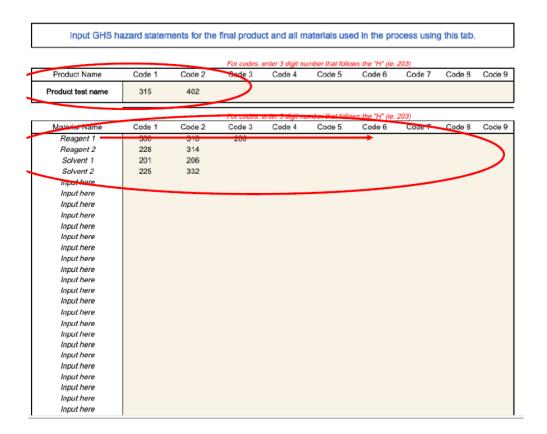
8. Does the product pose any physical, health or environmental hazards?

GC Compass: Guiding Questions


GC Compass: Guiding Questions


Score is automatically populated

Answers are automatically ranked by Most Preferred, Needs Improvement, or


GC Compass: Guiding Questions

GC Compass: Guiding Questions

GC Compass: Guiding Questions

Calculations are based on:

- Severity of hazard (through a weighting of the GHS hazard scores)
- Frequency of hazard category appearance
- Final Hazard Scores use worst case of Hazard Class and Frequency table

GC Compass: Guiding Questions

The following is a summary of indicators for:	My product						
Category and Question	Result	Explanation	Most Preferred (target)				
Responsible Sourcing							
Is the product derived or extracted in whole or in part from a renewable, BMB, carbon capture resource?	Needs Improvement	75% product derived or extracted in whole or in part from a renewable, Biomass Balance (BMB) or carbon capture resource. Needs Impovement ratings are based on 50% - 99.9% of product being derived from renewable, Biobased Mass Balance, and/or Carbon Capture resources.	100% of product is derived from renewable, Biobased Mass Balance, and/or Carbon Capture resources.				
Environmental footprint & Climate Change							
a) To what extent is the process for making this product energy intensive? b) Is renewable energy used in whole or in part in the process?	Most Preferred	Temperatures used were between either -10 to 50 degrees Celsius or the pressure was less than 5 ATM. OR The LCA carbon footprint was less than 10 kg CO2/kg material *Note: If 50% or more of the process is renewable energy, the score will be bumped up a level.	Temperatures used are between -10 to 50 degrees Celsius or the pressure was less than 5 ATM. OR The LCA carbon footprint is less than 10 kg CO2/kg material "Note: If 50% or more of the process is renewable energy, the score will be bumped up a level."				
3. a) What type of catalyst, if any, is used in this process? 3. b) What is the mol-recycle number for the catalyst used (if applicable)?	Needs Improvement	Metal-Based Catalysts were used in the reaction. Consider using a biocatalyst or enzyme or increase the TON.	A biocatalyst or enzyme is used. With the exception of high hazard catalyst, there is preference for catalysts with a mol-recycle number 1,000 or greater, which can improve the score result by one level.				
How much waste is generated in the process?	Least Preferred	The reported E-factor is 100. Least preferred ratings are when the E-factor is more than 25	The Environmental Impact Factor (E-factor), which is the total mass of waste from the process divided by the total mass of product, is ideally less than 5.				
To what extent is the product or formulation biodegradable?	Most Preferred	This product or formulation is readily biogradeable, which means, according to the OECD, it is greater than or equal to 80% biodegradable within 28 days	Most preferred is a product or formulation that is readily biodegradable. According to the OECD readily biodegradable means greater than or equal to 60% biodegradable within 28 days				
W H D : (5)							
Well-Being of Employees 8. What type of solvents are used?	Needs Improvement	One or more of the solvents used in the chemical process or formulation process could use improvement. Check the ACS Pharma Rountable Sovent Tool if looking for a replacement.	The most preferred solvents are ones that have low toxicity, low volatility, and low flammability. The list of most preferred solvents include acetic anhydride, anisole, benzyl alcohol, ethanol, ethyl acetate, carbon dioxide (supercritical), cyclohexanone, ethylene glycol, isopropanol, isopropyl acetate, isopropyl myristate, methyl acetate, methyl ketone, n-butyl acetate, n-butyl alcohol, sulfolane, t-butyl alcohol, water				
7. Do the reagents or raw materials pose any physical, health or environmental hazards?	Most Preferred	The Hazard Score of this process, according to the Hazard Score Calculator, is 2. Most perferred ratings are based on Hazard Scores less than 3.	The most preferred score hazard scores are 1-2, indicating low hazards associated with the reagents and raw materials in the process. Explore the ACS Green Chemistry Institute Pharmaceutical Roundtable's Reagent Guides to find alternative reagents for common chemical transformations: https://reagents.acsgcipr.org/				
Product Safety							
Does the product pose any physical, health or environmental hazards?	Most Preferred	The Hazard Score of this product, according to the Hazard Score Calculator, is 2. Most perferred ratings are based on Hazard Scores less than 3.	The most preferred score hazard scores are 1-2, indicating low hazards associated with the product.				

What can the IFRA Green Chemistry Compass help with?

- Target areas for improvement
- Guidance towards best practices
- Where to find additional Green Chemistry Resources (Additional Resources tab included)

Conclusion

Green Metrics & Sustainability in Perfumery

Still an on-going process
Attempt to harmonize different methods of calculation
Definitions of the «best» metrics?

Needs for Renewable Carbons?

Critical environmental factors are still difficult to assess or incompletely characterized by available methods (soil erosion, demographic pressure, ...)

LCA Analysis but Life Cycle Assessment of a product is never set in stone Carbon Foot-Print? Other Foot-Print?

Net-Zero Emission Goal.....What is one of the key Problem? What to do?

Thanks !!